. Scientific Frontline

Wednesday, August 10, 2022

Eco-glue can replace harmful adhesives in wood construction

Plywood with eco-glue produced in Aalto University.
Photo Credit: Aalto University

A fast and energy-efficient manufacturing process results in a strong, non-toxic and fire-resistant adhesive—and a great opportunity for the Finnish bioeconomy.

Researchers at Aalto University have developed a bio-based adhesive that can replace formaldehyde-containing adhesives in wood construction. The main raw material in the new adhesive is lignin, a structural component of wood and a by-product of the pulp industry that is usually burned after wood is processed. As an alternative to formaldehyde, lignin offers a healthier and more carbon-friendly way to use wood in construction.

The carbon footprint of timber construction is significantly lower than concrete construction, and timber construction has often been viewed as better for the health of human occupants as well. However, wood panels still use adhesives made from fossil raw materials. They contain formaldehyde, which can be harmful to health, especially for those working in the adhesive manufacturing process. People living in or visiting buildings can also be exposed to toxic formaldehyde from wood panels.

Lignin, on the other hand, comes from wood itself. It binds cellulose and hemicellulose together and gives wood its tough, strong structure. Lignin accounts for about a quarter of the weight of wood and is produced in huge quantities in the pulp and bioprocessing industry. Only two to five percent of the lignin produced is used, and the rest is burned in factories for energy.

Rice models moving ‘washers’ that help DNA replicate

A simulation shows how a six-sided helicase protein moves along a strand of DNA as it separates double strands into single strands during replication. Rice University theorists found that ATP hydrolysis is key to the proteins' stair-step motion. One complete step is seen here. 
Credit: Yang Gao/Shikai Jin/Rice University

Knowing the structure of a complex biological system isn’t nearly enough to understand how it works. It helps to know how the system moves.

In that light, Rice University researchers have modelled a key mechanism by which DNA replicates.

Combining structural experiments and computer simulations, bioscientist Yang Gao, theoretical physicist Peter Wolynes, graduate student Shikai Jin and their colleagues have uncovered details about how helicases, a family of ringlike motor proteins, wrangle DNA during replication. Their work could reveal new targets for disease-fighting drugs.

The synergy between the experiments and large-scale simulations they describe in the Proceedings of the National Academy of Sciences could become a paradigm for modeling of the mechanisms of many complex biological systems.

“These are dynamic processes that cannot be captured well with experimental methods alone,” said Gao, an assistant professor of biosciences and a CPRIT Scholar in Cancer Research. “But it’s important to show the mechanisms of these helicases, because they’re essential for DNA replication, and also possible drug targets.”

Climate change leads to invasive insect expansion on West Coast

A collage of oak galls created by oak gall wasps.
Credit: Kirsten Prior 

Climate change has led to warming temperatures in the Pacific Northwest, leading some insect species to expand their range into more northerly oak savannas, according to new research from Binghamton University, State University of New York.

Side by side, Dylan Jones displayed photos of two oak leaves. One, healthy and green, dotted by the occasional gall, a structure made by a herbivorous species of oak gall wasp. The other leaf was yellowed and tattered, the victim of an insect population without predatory checks and balances. Climate change has led to warming temperatures in the Pacific Northwest, leading species such as Neurotereus saltatorius to expand their range into more northerly oak savannas.

“In the native range, you might find a handful of galls on a single leaf. In the expanded range, sometimes you’re finding thousands on a single tree,” said Assistant Professor of Biological Sciences Kirsten Prior. “This is pretty prevalent throughout Vancouver Island.”

Jones, a Binghamton University doctoral candidate in biological sciences and Clifford D. Clark Diversity Fellow, is the lead author of a research paper recently published in the Journal of Animal Ecology on the situation. Co-authors on “Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect” include Prior, field technician Julia Kobelt, then-undergraduate Jenna Ross and Assistant Professor of Biological Sciences Thomas Powell.

Oak savannas are grassy and shrubby areas that feature oaks as the dominant tree species. The oak species in question — Quercus garryana — requires a dry environment. As a result, oak savannas are often found in the rain shadow of the West Coast’s mountain range, Prior explained.

Proteins team up to fix damaged DNA in human cells

 

Replication protein A (RPA) forms a complex with WASp at replication forks (red) within the nucleus (blue) of a human cell during DNA replication stress.   
Credit: Penn State College of Medicine / Penn State. Creative Commons

DNA replication and repair happens thousands of times a day in the human body and most of the time, people don’t notice when things go wrong thanks to the work of Replication protein A (RPA), the "guardian of the genome." Scientists previously believed this protein ‘hero’ responsible for repairing damaged DNA in human cells worked alone, but a new study by Penn State College of Medicine researchers showed that RPA works with an ally called the WAS protein (WASp) to "save the day" and prevent potential cancers from developing.

The researchers discovered these findings after observing that patients with Wiskott-Aldrich syndrome, or WAS — a genetic disorder that causes a deficiency of WASp — not only had suppressed immune system function, but in some cases, also developed cancer.

Dr. Yatin Vyas, professor and chair of the Department of Pediatrics at Penn State College of Medicine and pediatrician-in-chief at Penn State Health Children’s Hospital, conducted prior research which revealed that WASp functions within an apparatus that is designed to prevent cancer formation. As a result, some cancer patients had tumor cells with a WASp gene mutation. These observations led him to hypothesize that WASp might play a direct role in DNA damage repair.

“WAS is very rare — less than 10 out of every 1 million boys has the condition,” said Vyas, who is also the Children’s Miracle Network and Four Diamonds Endowed Chair. “Knowing that children with WAS were developing cancers and also observing WASp mutations in tumor cells of cancer patients, we decided to investigate whether WASp plays a role in DNA replication and repair.”

Neutrons help track down Mammalian Ancestors

Dr. Michael Schulz at the neutron radiography facility ANTARES.
Image Credit: Bernhard Ludewig, FRM II / TUM

Investigations at Research Neutron Source led to the discovery of a previously unknown animal species.

A team of German and Argentinian researchers has used neutrons in the FRM II research neutron source at the Technical University of Munich (TUM) to identify an animal species that has been extinct for 220 million years. Findings on the new species provide surprising insights into the evolution of mammals.

A long snout, a massive jaw and sharp teeth – these are some features of the newly discovered species Tessellatia bonapartei. It belongs to the group of Cynodontia (which literally translates to “dog teeth”), mammal-like animals from which mammals eventually evolved.

Argentinian researchers found the bones of the roughly mouse-sized cynodont species in the desert-like Talampaya National Park in the west of Argentina. “The bones were very fragile and therefore it was not possible to remove the surrounding rock without risking damaging them”, explains Dr. Aureliano Tartaglione of the research neutron source Heinz Maier-Leibnitz at TUM. He worked on the project with Dr. Leandro Gaetano from CONICET (National Scientific and Technical Research Council in Argentina).

Tuesday, August 9, 2022

See-through zebrafish

Tracing features in a large 3D electron microscopy dataset reveals a zebrafish blood stem cell (in green) and its surrounding niche support cells, a group photo method that will help researchers understand factors that contribute to blood stem cell health — which could in turn help develop therapies for blood diseases and cancers. 
Image Credit: Keunyoung Kim

For the first time, researchers can get a high-resolution view of single blood stem cells thanks to a little help from microscopy and zebrafish.

Researchers at the University of Wisconsin–Madison and the University of California San Diego have developed a method for scientists to track a single blood stem cell in a live organism and then describe the ultrastructure, or architecture, of that same cell using electron microscopy. This new technique will aid researchers as they develop therapies for blood diseases and cancers.

“Currently, we look at stem cells in tissues with a limited number of markers and at low resolution, but we are missing so much information,” says Owen Tamplin, an assistant professor in UW–Madison’s Department of Cell & Regenerative Biology, a member of the Stem Cell & Regenerative Medicine Center, and a co-author on the new study, which was published Aug. 9 in eLife. “Using our new techniques, we can now see not only the stem cell, but also all the surrounding niche cells that are in contact.”

The niche is a microenvironment found within tissues like the bone marrow that contain the blood stem cells that support the blood system. The niche is where specialized interactions between blood stem cells and their neighboring cells occur every second, but these interactions are hard to track and not clearly understood.

Robot helps reveal how ants pass on knowledge

Ant leading other ant to new nest, known as tandem running.
Credit: Norasmah Basari and Nigel R Franks

The team built the robot to mimic the behavior of rock ants that use one-to-one tuition, in which an ant that has discovered a much better new nest can teach the route there to another individual.

The findings, published in the Journal of Experimental Biology today, confirm that most of the important elements of teaching in these ants are now understood because the teaching ant can be replaced by a machine.

Key to this process of teaching is tandem running where one ant literally leads another ant quite slowly along a route to the new nest. The pupil ant learns the route sufficiently well that it can find its own way back home and then lead a tandem-run with another ant to the new nest, and so on.

Prof Nigel Franks of Bristol’s School of Biological Sciences said: “Teaching is so important in our own lives that we spend a great deal of time either instructing others or being taught ourselves. This should cause us to wonder whether teaching actually occurs among non-human animals. And, in fact, the first case in which teaching was demonstrated rigorously in any other animal was in an ant.” The team wanted to determine what was necessary and sufficient in such teaching. If they could build a robot that successfully replaced the teacher, this should show that they largely understood all the essential elements in this process.

Boeing, Nammo Complete Long-Range Ramjet Artillery Test

Boeing Ramjet 155 projectile
Illustration Credit: Boeing


Boeing [NYSE: BA] and Norwegian defense and aerospace company Nammo have successfully test-fired a ramjet-powered artillery projectile, further demonstrating the viability of one of the U.S. Army’s modernization priorities – long-range precision fires.

During the June 28 test at the Andøya Test Center in Norway, a Boeing Ramjet 155 projectile was fired out of a cannon and its ramjet engine ignited successfully. It demonstrated flight stability with a well-controlled engine combustion process.

Credit: Boeing
“We believe the Boeing Ramjet 155, with continued technology maturation and testing, can help the U.S. Army meet its long-range precision fires modernization priorities,” said Steve Nordlund, Boeing Phantom Works vice president and general manager. “This successful test is evidence that we are making great progress.”

“This is a historic moment for Nammo,” said Nammo Chief Executive Officer Morten Brandtzæg. “The test results demonstrate that ramjets are viable and can fundamentally change the future of artillery.

“We have great confidence in the ramjet concept,” Brandtzæg added. “The test – with all aspects from cannon firing, to the projectile body, fins, and trajectory all functioning perfectly – represents a real technological breakthrough in artillery, and a major success for Boeing, Nammo, and the U.S. Army.”

The long-range test at Andøya follows years of research, development and testing by Boeing and Nammo of ramjet technology, including more than 450 static or short-range tests.

Boeing Phantom Works and Nammo have been working together under a strategic partnership to jointly develop and produce the next generation of boosted artillery projectiles. In July 2019, the Boeing-Nammo team was awarded a contract under the U.S. Army’s XM1155 program to develop and mature the Ramjet 155 projectile. In May 2021, the team was awarded a Phase II technology development contract.

Ramjet 155 uses an engine in which the air drawn in for combustion is compressed solely by the forward motion of the projectile at supersonic speeds. Considered a hybrid between guided artillery and missiles, the program has an objective of a common round design that can be used in L39 and L58 cannons.

The team continues to develop and mature the technology, with further testing and demonstrations planned in the coming months.

Source/Credit: Boeing

tn080922_01

How water turns into ice — with quantum accuracy

Researchers at Princeton University combined artificial intelligence and quantum mechanics to simulate what happens at the molecular level when water freezes. The result is the most complete simulation yet of the first steps in ice “nucleation,” a process important for climate and weather modeling.  
Video by Pablo Piaggi, Princeton University

A team based at Princeton University has accurately simulated the initial steps of ice formation by applying artificial intelligence (AI) to solving equations that govern the quantum behavior of individual atoms and molecules.

The resulting simulation describes how water molecules transition into solid ice with quantum accuracy. This level of accuracy, once thought unreachable due to the amount of computing power it would require, became possible when the researchers incorporated deep neural networks, a form of artificial intelligence, into their methods. The study was published in the journal Proceedings of the National Academy of Sciences.

“In a sense, this is like a dream come true,” said Roberto Car, Princeton’s Ralph W. *31 Dornte Professor in Chemistry, who co-pioneered the approach of simulating molecular behaviors based on the underlying quantum laws more than 35 years ago. “Our hope then was that eventually we would be able to study systems like this one, but it was not possible without further conceptual development, and that development came via a completely different field, that of artificial intelligence and data science.”

The ability to model the initial steps in freezing water, a process called ice nucleation, could improve accuracy of weather and climate modeling as well as other processes like flash-freezing food.

The new approach enables the researchers to track the activity of hundreds of thousands of atoms over time periods that are thousands of times longer, albeit still just fractions of a second, than in early studies.

Car co-invented the approach to using underlying quantum mechanical laws to predict the physical movements of atoms and molecules. Quantum mechanical laws dictate how atoms bind to each other to form molecules, and how molecules join with each other to form everyday objects.

In control of chaos

Assembly line: A different chemical mixture is created in each of the droplets within the "Tubular flow reactor" – under exactly the same boundary conditions.
Image Credit: Empa

Crystals consisting of wildly mixed ingredients - so-called high-entropy materials - are currently attracting growing scientific interest. Their advantage is that they are particularly stable at extremely high temperatures and could be used, for example, for energy storage and chemical production processes. An Empa team is producing and researching these mysterious ceramic materials, which have only been known since 2015.

Nature strives for chaos. That's a nice, comforting phrase when yet another coffee cup has toppled over the computer keyboard and you imagine you could wish the sugary, milky brew back into the coffee cup - where it had been just seconds before. But wishing won't work. Because, as mentioned, nature strives for chaos.

Scientists have coined the term entropy for this effect - a measure of disorder. In most cases, if the disorder increases, processes run spontaneously and the way back to the previously prevailing order is blocked. See the spilled coffee cup. Even thermal power plants, which generate a huge cloud of steam above their cooling tower from a neat pile of wood or a heap of hard coal, operate driven by entropy. Disorder increases dramatically in many combustion processes - and humans take advantage of this, tapping a bit of energy in the form of electricity from the ongoing process for their own purposes.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles