T cells are our immune system's customized tools for fighting infectious diseases and tumor cells. On their surface, these special white blood cells carry a receptor that recognizes antigens. With the help of cryo-electron microscopy, biochemists and structural biologists from Goethe University Frankfurt, in collaboration the University of Oxford and the Max Planck Institute of Biophysics, were able to visualize the whole T-cell receptor complex with bound antigen at atomic resolution for the first time. Thereby they helped to understand a fundamental process which may pave the way for novel therapeutic approaches targeting severe diseases.
The immune system of vertebrates is a powerful weapon against external pathogens and cancerous cells. T cells play a crucial role in this context. They carry a special receptor called the T-cell receptor on their surface that recognizes antigens – small protein fragments of bacteria, viruses and infected or cancerous body cells – which are presented by specialized immune complexes. The T-cell receptor is thus largely responsible for distinguishing between “self" and “foreign". After binding of a suitable antigen to the receptor, a signaling pathway is triggered inside the T cell that “arms" the cell for the respective task. However, how this signaling pathway is activated has remained a mystery until now – despite the fact that the T-cell receptor is one of the most extensively studied receptor protein complexes.