. Scientific Frontline

Tuesday, August 23, 2022

Revealed missing step in lipid formation could enable detection of past climate

A team from Penn State and the University of Illinois Urbana-Champaign has determined the missing step in the formation of a molecule called GDGT, which is a promising candidate for use as an indicator of past climate. The team determined the X-ray crystal structure of an enzyme that facilitates this process called GDGT/MAS—shown here bound to additional cofactors.
Credit: Booker Lab | Pennsylvania State University

The missing step in the formation of a lipid molecule that allows certain single-celled organisms to survive the most extreme environments on Earth has now been deciphered. This new understanding, uncovered by a team of biochemists from Penn State and the University of Illinois Urbana-Champaign, could improve the ability of the lipids to be used as an indicator of temperature across geological time.

The lipid, called glycerol dibiphytanyl glycerol tetraether (GDGT), is found in the cell membrane of some species of archaea, single-celled organisms that were originally thought to be bacteria but now are considered a separate group. This lipid provides the stability for some species to thrive in environments with extremely high temperatures, salinity or acidity, like thermal vents in the ocean, hot springs and hypersaline waters. The unique stability of GDGT also allows it to be detected hundreds or even thousands of years after the organism dies. Because these organisms tend to produce more GDGT at higher temperatures, it is considered a promising candidate for estimating temperature over geologic time.

“For GDGT to be accurately used as a proxy to reconstruct changes in geological temperatures, scientists need to better understand how it is made, what genes code for it, and which species can create it,” said Squire Booker, a biochemist at Penn State, an investigator with the Howard Hughes Medical Institute, and leader of the research team. “But, until now, there has been a missing step in the formation of this lipid. We used imaging techniques coupled with chemical and biochemical methods to deconstruct the chemical pathway for this missing step.”

COVID-19 pandemic fallout worse for women

Dr Terry Fitzsimmons, Lead author
Credit: University of Queensland

Researchers from The University of Queensland have found the COVID-19 pandemic in Australia has had a greater financial and psychological impact on women than men.

A study conducted by the UQ Business School shows women have experienced more significant impacts on their overall employment, hours of work, domestic labor and mental health and wellbeing.

Lead researcher Dr Terry Fitzsimmons said one reason was the over-representation of women in industries most affected by lockdowns.

“Women are also more likely to be casual, part-time or contract workers which were among the first to lose their jobs as businesses struggled in response to lockdown,” Dr Fitzsimmons said.

Additionally, the study found women were less likely to be considered ‘essential workers’, so bore a greater share of caring responsibilities including home schooling, when schools and child care centers closed.

“Women either reduced their work hours or stopped working altogether and took on more domestic labor than their male counterparts while at home with their children,” Dr Fitzsimmons said.

Researchers develop the first AI-based method for dating archaeological remains

Credit: Unsplash

By analyzing DNA with the help of artificial intelligence (AI), an international research team led by Lund University in Sweden has developed a method that can accurately date up to ten-thousand-year-old human remains.

Accurately dating ancient humans is key when mapping how people migrated during world history.

The standard dating method since the 1950s has been radiocarbon dating. The method, which is based on the ratio between two different carbon isotopes, has revolutionized archaeology. However, technology is not always completely reliable in terms of accuracy, making it complicated to map ancient people, how they moved and how they are related.

In a new study published in Cell Reports Methods, a research team has developed a dating method that could be of great interest to archaeologists and paleognomicists.

“Unreliable dating is a major problem, resulting in vague and contradictory results. Our method uses artificial intelligence to date genomes via their DNA with great accuracy, says Eran Elhaik, researcher in molecular cell biology at Lund University.

Increasing use of hazardous preservatives - measures are needed to protect health and the environment

Credit: Pixabay

The use of hazardous preservatives in chemical products has increased dramatically during the years 1995–2018. Several of these are highly allergenic and can cause lifelong allergies that affect work ability and quality of life. A new study from the Institute of Environmental Medicine (IMM) highlights the need for measures to protect human health and the environment.

Many preservatives and other biocides are highly allergenic in skin contact. Several are also harmful to the environment. Allergy is lifelong and anyone who has become allergic must avoid skin contact with the substance in order not to become ill in allergic contact dermatitis that adversely affects work ability and quality of life.

Significantly increased use

The purpose of the current study was to increase knowledge about how EU chemicals legislation and the use of the most problematic preservatives in chemical products have evolved over time, while the use in cosmetics is more widely known. The results show that the use of the most problematic substances has increased very significantly. The study also shows that information on the content of preservatives is often missing due to the design of the regulations. The only products that today must have a declaration of preservatives on the packaging are cosmetics and detergents. Some preservatives, especially isothiazolinones, have caused massive outbreaks of contact allergy due to extensive use. Therefore, it is often difficult to avoid risky contact and skin disease. Color, adhesive and putty are examples of products that often contain these harmful chemicals.

Monday, August 22, 2022

‘Drug factory’ implants eliminate mesothelioma tumors in mice

Tiny alginate bead implants invented in the laboratory of Rice University bioengineer Omid Veiseh can be loaded with cells that produce cytokine, proteins that play a major role in immune response. A new study found a treatment combining the implants and checkpoint inhibitor drugs eradicated advanced mesothelioma tumors in all seven mice in which it was tested.
Photo credit: Jeff Fitlow/Rice University

Rice University and Baylor College of Medicine researchers have shown they can eradicate advanced-stage mesothelioma tumors in mice in just a few days with a treatment combining Rice’s cytokine “drug factory” implants and a checkpoint inhibitor drug.

The researchers administered the drug-producing beads, which are no larger than the head of a pin, next to tumors where they could produce continuous, high doses of interleukin-2 (IL-2), a natural compound that activates white blood cells to fight cancer.

The study, published online today in Clinical Cancer Research, is the latest in a string of successes for the drug-factory technology invented in the lab of Rice bioengineer Omid Veiseh, including Food and Drug Administration (FDA) approval to begin clinical trials of the technology this fall in ovarian cancer patients.

“From the beginning, our objective was to develop a platform therapy that can be used for multiple different types of immune system disorders or different types of cancers,” said Rice graduate student Amanda Nash, who spent several years developing the implant technology with study co-lead author Samira Aghlara-Fotovat, a fellow student in Veiseh’s lab.

Boeing Delivers Two Commercial Satellites to SES for ULA Launch

Two C-band satellites enable SES to provide rapid broadcast and radio services, and critical network communications, to the United States
Credit: Boeing 

Boeing has delivered two satellites for leading global content connectivity service provider SES to their launch site in Cape Canaveral, Florida, ahead of the upcoming launch of the twin spacecraft on a United Launch Alliance (ULA) Atlas V rocket.

“SES-20 and SES-21 are the first commercial satellites we’ve delivered since the start of the global pandemic,” said Ryan Reid, president of Boeing Satellite Systems International. “It was challenging, but we found ways to be responsive to emerging customer demands and timelines. As a result, we went from contract signing to delivery of two satellites in little over two years.”

The pair of all-electric 702SP (small platform) satellites are equipped with C-band payloads that will operate over the continental United States and help usher in the Federal Communications Commission’s 5G Fast initiative, which requires satellite operators such as SES to transition services from the lower 300 MHz to the upper 200 MHz of C-band spectrum for 5G mobile services.

Study paves way for widespread architectural use of end-of-life tires

'Earthship' built from recycled tires at Ironbank, SA. 
Credit: Earthship Ironbank

A new study by The University of South Australia published in the journal Engineering Structures has tested and verified the structural integrity of walls constructed from tires packed with earth, with the results potentially providing new opportunities for the reuse of end-of-life tires in the construction industry.

Tire waste represents a major sustainability challenge globally, with Australia alone generating an average of 55 million (450,000 tons) end-of-life tires each year.

While earth-packed tire walls have been used in niche construction scenarios for decades, there has previously been no strong empirical data available to support their use, a fact that has limited their wider uptake by architects and engineers.

Supported by Tire Stewardship Australia, a UniSA team consisting of Yachong Xu, Martin Freney, Reza Hassanli, Yan Zhuge, Mizanur Rahman and Rajibul Karim, has rigorously assessed the structural integrity of a test tire wall to examine how the structure performed under various stressors.

According to Dr. Martin Freney, the wall proved to be as structurally sound as conventional walls used in residential applications.

“The wall we tested was the first of its kind to be scientifically tested in this fashion, and all the data indicates tire walls can be extremely strong and safe structures,” Dr. Freney says.

Sulfur shortage: a potential resource crisis looming as the world decarbonizes

Sulfur Image by Simon from Pixabay 

A projected shortage of sulfuric acid, a crucial chemical in our modern industrial society, could stifle green technology advancement and threaten global food security, according to a new study led by UCL researchers.

The study, published in the Royal Geographical Society (with the Institute of British Geographers) journal The Geographical Journal, highlights that global demand for sulfuric acid is set to rise significantly from ‘246 to 400 million tons' by 2040 - a result of more intensive agriculture and the world moving away from fossil fuels.

The researchers estimate that this will result in a shortfall in annual supply of between 100 and 320 million tons - between 40% and 130% of current supply - depending on how quickly decarbonization occurs.

A vital part of modern manufacturing, sulfuric acid is required for the production of phosphorus fertilizers that help feed the world, and for extracting rare metals from ores essential to the rapidly required green economy transition, like cobalt and nickel used in high-performance Li-ion batteries.

Currently, over 80% of the global sulfur supply is in the form of sulfur waste from the desulfurization of crude oil and natural gas that reduces the sulfur dioxide gas emissions that cause acid rain. However, decarbonization of the global economy to deal with climate change will significantly reduce the production of fossil fuels - and subsequently the supply of sulfur.

Plastic Upcycling: From Waste to Fuel for Less

Plastic upcycling provides a way to reuse the waste carbon now cluttering landfills and beaches.
 Animation by Sara Levine | Pacific Northwest National Laboratory

A plastics recycling innovation that does more with less, presented today at the American Chemical Society fall meeting in Chicago, simultaneously increases conversion to useful products while using less of the precious metal ruthenium.

“The key discovery we report is the very low metal load,” said Pacific Northwest National Laboratory chemist Janos Szanyi, who led the research team. “This makes the catalyst much cheaper.”

The new method more efficiently converts plastics to valuable commodity chemicals—a process termed “upcycling.” In addition, it produces much less methane, an undesirable greenhouse gas, as a byproduct, compared with other reported methods.

“It was very interesting to us that there had been nothing previously published showing this result,” said postdoctoral research scientist Linxiao Chen, who presented the research at ACS. “This research shows the opportunity to develop effective, selective and versatile catalysts for plastic upcycling.”

Caterpillar-like bacteria crawling in our mouth

Confocal microscope image of the caterpillar-like bacterium Conchiformibius steedae, up to 7 µm long, incubated with fluorescently labelled cell wall precursors to follow its cell growth
Credit: CC BY 4.0 Philipp Weber and Silvia Bulgheresi

Likely to survive in the oral cavity, bacteria evolved to divide along their longitudinal axis without parting from one another. A research team co-led by environmental cell biologist Silvia Bulgheresi from the University of Vienna and microbial geneticist Frédéric Veyrier from the Institut national de la recherche scientifique (INRS) just published their new insights in Nature Communications. In their work, they described the division mode of these caterpillar-like bacteria and their evolution from a rod-shaped ancestor. They propose to establish Neisseriaceae oral bacteria as new model organisms that could help pinpoint new antimicrobial targets.

Although our mouth houses over 700 species of bacteria and its microbiota is, therefore, as diverse as that of our gut, not much is known about how oral bacteria grow and divide. The mouth is a tough place to live in for bacteria. The epithelial cells lining the inner surface of the oral cavity are constantly shed and, together with salivary flow, organisms that inhabit this surface will therefore struggle for attachment. It is perhaps better to stick to our mouth that bacteria of the family Neisseriaceae have evolved a new way to multiply. Whereas typical rods split transversally and then detach from each other, some commensal Neisseriaceae that live in our mouths, however, attach to the substrate with their tips and divide longitudinally – along their long axis. In addition to that, once cell division is completed, they remain attached to one another forming caterpillar-like filaments. Some cells in the resulting filament also adopt different shapes, possibly to perform specific functions to the benefit of the whole filament. The researchers explain: "Multicellularity makes cooperation between cells possible, for example in the form of division of labor, and may therefore help bacteria to survive nutritional stress."

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles