Motivated by the need to eliminate expensive rare-earth magnets in utility-scale direct-drive wind turbines, Sandia National Laboratories researchers developed a fundamentally new type of rotary electrical contact. Sandia is now ready to partner with the renewable energy industry to develop the next generation of direct-drive wind turbines.
Sandia’s Twistact technology takes a novel approach to transmitting electrical current between a stationary and rotating frame, or between two rotating assemblies having different speeds or rotational direction, ideal for application in wind turbines.
“Twistact originated by asking ourselves some really challenging questions,” said Jeff Koplow, Sandia research scientist and engineer. “We knew it could be game-changing if we could find a way to get around the limited-service lifetime of conventional rotary electrical contacts.”
“I started thinking that maybe not every conceivable rotary electrical contact architecture has been thought of yet,” Koplow said. “We spent a lot of time considering if there was another plausible way.”
The resulting innovation, Twistact, uses a pure-rolling-contact device to transmit electrical current along an ultra-low-resistance path. The technology proves beneficial in lowering costs, improving