![]() |
Photo credit: Milos Prelevic |
Scientists have discovered how a chemical in the cells of marine organisms enables them to survive the high pressures found in the deep oceans.
The deeper that sea creatures live, the more inhospitable and extreme the environment they must cope with. In one of the deepest points in the Pacific - the Mariana Trench, 11 kilometers below the sea surface - the pressure is 1.1 kbar or eight tons per square inch. That is a 1,100-fold increase of the pressure experienced at the Earth’s surface.
Under normal or atmospheric pressure, water molecules form a tetrahedron-like network. At high pressure, though, the network of water molecules begins to distort and change shape. When this happens to the water inside living cells, it prevents vital bio-chemical processes from taking place - and kills the organism.
Our study provides a bridge between water under pressure at the molecular level and the wonderful ability of organisms which thrive under high pressure in depths of the oceans.
In reporting their findings, the researchers in Leeds have for the first time been able to provide an explanation of how a molecule found in the cells of marine organisms counteracts the effect of external pressure on the water molecules.