![]() |
A tardigrade, or water bear, floating in water. The tiny organism can endure some of the most extreme conditions on Earth — and even space. Credit: Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, et al. licensed under the Creative Commons Attribution 2.5 Generic license. |
UCLA chemist Heather Maynard had to wonder: How do organisms like the tardigrade do it?
This stocky microscopic animal, also known as a water bear, can survive in environments where survival seems impossible. Tardigrades have been shown to endure extremes of heat, cold and pressure — and even the vacuum of space — by entering a state of suspended animation and revitalizing, sometimes decades later, under more hospitable conditions.
If she could understand the mechanism behind this extraordinary preservation, Maynard reckoned, she might be able to use the knowledge to improve medicines so that they remain potent longer and are less vulnerable to typical environmental challenges, ultimately broadening access and benefiting human health.
It turns out that one of the processes protecting tardigrades is spurred by a sugar molecule called trehalose, commonly found in living things from plants to microbes to insects, some of which use it as blood sugar. For a few select organisms, such as the water bear and the spiky resurrection plant, that can revive after years of near-zero metabolism and complete dehydration, trehalose’s stabilizing power is the secret to their unearthly fortitude.