. Scientific Frontline

Friday, October 21, 2022

New cervical cancer screening test can predict cell changes well in advance

The new test is part of a research program aimed at predicting the risk of developing four types of cancer from a single cell sample from the cervix.
Credit: Mart Production

Researchers at Karolinska Institutet, among others, have developed a screening test for cervical cancer that can predict cell changes several years before they are visible under the microscope. The test is also better at identifying high-grade cell changes in gynecological cell samples than today's methods. It shows a study published in the journal Genome Medicine.

The method has the potential to improve today's screening program and enable a previous intervention to prevent cancer, says Karin Sundström, doctor at Karolinska University Hospital and senior researcher at Department of Laboratory Medicine, Karolinska Institutet.

The test was developed by an international research team from Karolinska Institutet, Innsbruck University in Austria and University College London (UCL) in the United Kingdom. It is part of a research program aimed at predicting the risk of developing four types of cancer (breast, ovarian, uterine and cervical cancer) from a single cell sample from the cervix. Previous studies have shown that the test may detect the risk of breast and ovarian cancer by analyzing a regular cell sample from the cervix.

Disease Outbreaks Influence the Color of Wolves Across North America

 Members of the Druid Peak Pack in Yellowstone National Park engage in a game of chase. The gray colored wolf on the left represents the homozygous gray phenotype, while the black colored wolf on the right represents the K-locus black phenotype.
Credit: Daniel Stahler/NPS

New research from the University of Oxford, Yellowstone National Park, and Penn State, published today in the journal Science, may have finally solved why wolves change color across the North American continent.

If you were to travel from Arctic Canada and head south down the Rocky Mountains into the US toward Mexico, the further south you go, the blacker wolves there are. The reasons why have long puzzled scientists.

Professor Tim Coulson from the Department of Biology, University of Oxford who led the work explains, ‘In most parts of the world black wolves are absent or very rare, yet in North America they are common in some areas and absent in others. Scientists have long wondered why. We now have an explanation based on wolf surveys across North America, and modelling motivated by extraordinary data collected by co-authors who work in Yellowstone.’

Sickly Shades of Grey: Disease Outbreaks Influence the Color of Wolves Across North America. Depending on the variant of the gene a wolf has, its coat can either be black or grey.

Ural Scientists Created Nanoparticle Growth Technology

The new material is suitable for solar cells, biosensors, and other systems working on quantum principles.
Photo credit: Vladimir Petrov

Physicists at Ural Federal University and their colleagues from the Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, and the Institute of Ion Plasma and Laser Technologies, Academy of Sciences, have developed a technology for growing nonspherical nanoparticles that are synthesized by ion implantation. With the new technique, it is possible to grow nanoparticles of different shapes and thus obtain the necessary properties and control them. The technology is applicable to different metals, both noble metals such as gold, silver, platinum, and "ordinary", the scientists assure. A description of the technology and the results of the first experiments - copper implantation in ceramics - are presented in the Journal of Physics and Chemistry of Solids.

"By changing the shape of nanoparticles from spherical to non-spherical, we were able to increase the range of optical absorption. This, in turn, is the basis for further converting the absorbed energy into electricity and heat. As a result, we can get more functional sensors and increase their sensitivity range. If such nanoparticles are built into lasers, their power will increase. If we talk about sensors, their sensitivity will increase. As for sensors, their response time will change. This is all due to the peculiarity of plasmon resonance, which leads to the fact that around the nanoparticles there is an amplified electric field," explains study co-author Arseny Kiryakov, Associate Professor at the Department of Physical Techniques and Devices for Quality Control at UrFU.

Study Finds No Benefit to Taking Fluvoxamine for COVID-19 Symptoms


A study led by the Duke Clinical Research Institute (DCRI) in partnership with Vanderbilt University found no symptomatic or clinical benefit to taking the antidepressant fluvoxamine 50 mg twice daily for 10 days for the treatment of mild-to-moderate COVID-19 symptoms.

“There was no evidence of improvement in time to recovery in participants who took this dose of fluvoxamine versus those who took a placebo,” said Adrian Hernandez, M.D., the study’s administrative principal investigator and executive director of the DCRI.

Findings appear on medRxiv, a pre-publication server, and have been submitted to a peer-reviewed journal.

Researchers looked at the rate of sustained recovery, defined as three days without symptoms, in ACTIV-6. While 75% of participants were still reporting symptoms on day 7, the majority (82%) of these participants reported no limitation in activities.

Thursday, October 20, 2022

How a Small Protein Plays a Large Role in Mitochondrial Function

Rebecca Voorhees
Credit: Caltech

Caltech researchers have discovered an unexpected role for a protein in human cells, solving a longstanding mystery about how the composition of mitochondrial membranes is regulated.

Multiple studies have previously shown that mutations in the protein MTCH2 are associated with a wide range of disorders such as Alzheimer's disease, Parkinson's disease, and leukemia, but it has been unclear what exactly MTCH2 was doing to have such a major effect on the cell's function. This new work shows that MTCH2 is critical for the construction of a cell's mitochondria, specifically for carefully inserting proteins into the mitochondrial outer membrane.

The research was conducted in the laboratory of Rebecca Voorhees, assistant professor of biology and biological engineering and a Heritage Medical Research Institute Investigator, and was a close collaboration with the laboratory of Jonathan Weissman at the Whitehead Institute at MIT. A paper describing the study appears in the journal Science on October 21.

Wildfires drive L.A.’s mountain lions to take deadly risks

  A National Park Service researcher displays the scorched paws of the adult male mountain lion known as P-64. While an NPS tracking collar showed that P-64 survived the Woolsey Fire, he died several weeks later of starvation.
Credit: Santa Monica Mountains National Recreation Area

When the Woolsey Fire roared through the Santa Monica Mountains in fall 2018, it torched half of the available habitat for the area’s mountain lions — a population already hemmed in by freeways and an ocean.

Most survived the blaze, but in a study published today in Current Biology, scientists from UCLA and the National Park Service found that the animals, no longer able to utilize burned areas, engaged in risky behaviors that increased the likelihood of dangerous encounters with human-built infrastructure and rival mountain lions.

Conflicts with other cougars, particularly males, can be deadly, said lead study author Rachel Blakey, a researcher with UCLA’s La Kretz Center for California Conservation Biology. So can crossing busy roads and freeways, something the researchers found occurred with greater frequency in the 15 months after the fire, jumping from about three crossings a month to five.

“The mountain lions we live alongside in L.A. are already taking their chances with roads and other mountain lions,” Blakey said. “The Woolsey Fire, by further limiting the space they have, really intensified those risks.”

A 10,000-Year-Old Infant Burial Provides Insights Into the Use of Baby Carriers and Family Heirlooms in Prehistory

 Team of researchers including Claudine Gravel-Miguel from Arizona State University, Jamie Hodgkins from the University of Colorado Denver work at the excavation of Arma Veirana.
Credit: University of Colorado Denver

If you’ve taken care of an infant, you know how important it is to find ways to multitask. And, when time is short and your to-do list is long, humans find ways to be resourceful—something caregivers have apparently been doing for a very, very long time.

The authors of a new article published in the Journal of Archaeological Method and Theory argue that they have found evidence of the use of baby carriers 10,000 years ago at the Arma Veirana site in Liguria, Italy. The research, led by Arizona State University’s Claudine Gravel-Miguel, PhD, also includes the University of Colorado Denver’s Jamie Hodgkins, PhD, an Associate Professor of Anthropology, and a co-principal investigator on the excavation of Arma Veirana.

Because material used to make the first baby carriers is not preserved well in the archaeological record and because prehistoric baby burials are very uncommon, evidence for prehistoric baby carriers is extremely rare. The site—which includes the oldest documented burial of a female infant in Europe, a 40- to 50-days-old baby, nicknamed Neve—has both. Researchers used innovative analytical methods to extract hard-to-obtain information about perforated shell beads found at the site.

Reprogrammable materials selectively self-assemble

With just a random disturbance that energizes the cubes, they selectively self-assemble into a larger block. 
Credit: MIT CSAIL

While automated manufacturing is ubiquitous today, it was once a nascent field birthed by inventors such as Oliver Evans, who is credited with creating the first fully automated industrial process, in flour mill he built and gradually automated in the late 1700s. The processes for creating automated structures or machines are still very top-down, requiring humans, factories, or robots to do the assembling and making.

However, the way nature does assembly is ubiquitously bottom-up; animals and plants are self-assembled at a cellular level, relying on proteins to self-fold into target geometries that encode all the different functions that keep us ticking. For a more bio-inspired, bottom-up approach to assembly, then, human-architected materials need to do better on their own. Making them scalable, selective, and reprogrammable in a way that could mimic nature’s versatility means some teething problems, though.

Now, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have attempted to get over these growing pains with a new method: introducing magnetically reprogrammable materials that they coat different parts with — like robotic cubes — to let them self-assemble. Key to their process is a way to make these magnetic programs highly selective about what they connect with, enabling robust self-assembly into specific shapes and chosen configurations.

Genes that influence dyslexia


A large-scale gene study identifies series of DNA variants linked to dyslexia

An international team of scientists, including researchers at the University of Edinburgh and the Max Planck Institute for Psycholinguistics in Nijmegen (Netherlands), has for the first time pinpointed a large number of genes that are reliably associated with dyslexia. Around a third of the 42 genetic variants identified have been previously linked to general cognitive abilities and educational attainment. The researchers say their findings may aid our understanding of the biology behind why some children struggle to read or spell.

Dyslexia is known to run in families – partly because of genetic factors – but, until now, little was known about the identities of the genes involved. The new study, led by the University of Edinburgh and published in the journal Nature Genetics, represents the largest molecular genetic investigation of dyslexia to date. Previous studies linking dyslexia to individual genes have been carried out with much smaller numbers of families and the evidence was unclear, the research team says.

The team analyzed DNA from more than 50,000 adults who have been diagnosed with dyslexia and more than one million adults who have not, identified via collaboration with the US company, 23andMe, Inc. “Over several decades of earlier research, more limited genetic investigations of dyslexia gave us tantalizing first clues to how DNA may be involved.” notes Simon Fisher, director of the Language and Genetics department at the Max Planck Institute. “Now, largescale genomic studies of this kind promise to transform understanding of how our genes help us learn to read and write.”

Alligators Exposed to PFAS Show Autoimmune Effects

Photo Credit: Jack Kelly

A recent study of alligators in the Cape Fear River found the animals had elevated levels of 14 different per- and polyfluoroalkyl (PFAS) chemicals in their blood serum, as well as clinical and genetic indicators of immune system effects. The work adds to the body of evidence connecting PFAS exposure with adverse immune system effects.

The research team, led by Scott Belcher, associate professor of biology at North Carolina State University, took blood samples and did health evaluations on 49 alligators living along the Cape Fear River between 2018 and 2019. They compared these results to a reference population of 26 alligators from Lake Waccamaw, located in the adjoining Lumber River basin.

“We looked at 23 different PFAS and saw clear differences between both types and levels of PFAS in the two populations,” Belcher says. “We detected an average of 10 different PFAS in the Cape Fear River samples, compared to an average of five different PFAS in the Lake Waccamaw population.

“Additionally, blood concentrations of fluoroethers such as Nafion byproduct 2 were present at higher concentrations in alligators from the Cape Fear River basin, whereas these levels were much lower – or not detected – in alligators from Lake Waccamaw. Our data showed that as we moved downstream from Wilmington to Bald Head Island, overall PFAS concentrations decreased.”

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles