![]() |
Nanobodies (grey) with magnetic probes (red stars) target the desired membrane protein. Credit: Bordignon, Enrica |
Membrane proteins are key targets for many drugs. They are located between the outside and inside of our cells. Some of them, called ‘‘transporters’’, move certain substances in and out of the cellular environment. Yet, extracting and storing them for observation is particularly complex. A team from the University of Geneva (UNIGE), in collaboration with the University of Zurich (UZH), has developed an innovative method to study their structure in their native environment: the cell. The technique is based on electron spin resonance spectroscopy. These results, just published in the journal Science Advances, may facilitate future development of new drugs.
In living organisms, each cell is surrounded by a cell membrane (or ‘‘cytoplasmic membrane’’). This membrane consists of a double layer of lipids. It separates the contents of the cell from its direct environment and regulates the substances that can enter or leave the cell. The proteins attached to this membrane are called ‘‘membrane proteins’’.
Located at the interface between the outside and inside of the cell, they carry various substances across the membrane - into or out of the cell - and play a crucial role in cell signaling, i.e. in the communication system of cells that allows them to coordinate their metabolic processes, development and organization. As a result, membrane proteins represent more than 60% of current drug targets.