![]() |
The mathematical model of the UrFU scientists helps to simulate the solidification process of an alloy. Credit: unsplash.com / Dan Cristian Pădureț |
In space, due to the absence of gravity, metal hardens more homogeneously than on Earth. This was discovered by physicists who calculated the solidification process of aluminum-nickel metal alloys. Alloys were not chosen by chance, as they are one of the most common and account for 20% of all metalworking in the world. The model was built based on experimental data: the results obtained for alloy samples in microgravity on board the International Space Station were compared with the results of samples processed in terrestrial conditions. The results of experiments and modeling are presented in the journal Acta Materialia.
All aluminum-based materials are produced from the liquid phase, which is the initial phase. The solidification process and the conditions present at the moment of solidification determine the microstructural state of the final part, the scientists explain. The model considers the effects of crystallization rate and supercooling on the formation of alloy structure and properties, and allows the correct prediction of the microstructure and the required mechanical and electrical properties of the alloy.