How can a drug be delivered exactly where it is needed, while limiting the risk of side effects? The use of nanoparticles to encapsulate a drug to protect it and the body until it reaches its point of action is being increasingly studied. However, this requires identifying the right nanoparticle for each drug according to a series of precise parameters. A team from the University of Geneva (UNIGE) and the Ludwig Maximilians Universität München (LMU) has succeeded in developing a fully biodegradable nanoparticle capable of delivering a new anti-inflammatory drug directly into macrophages - the cells where uncontrolled inflammatory reactions are triggered - ensuring its effectiveness. In addition, the scientists used an invitro screening methodology, thus limiting the need for animal testing. These results, recently published in the Journal of Controlled Release, open the way to an extremely powerful and targeted anti-inflammatory treatment.
Inflammation is an essential physiological response of the body to defend itself against pathogens such as bacteria. It can, however, become problematic when it turns into a chronic condition, such as in cancers, autoimmune diseases or certain viral infections. Many treatments already exist, but their action is often not very targeted, high doses are required and deleterious side effects are frequent. Macrophages, large immune cells whose natural function is to absorb pathogens and trigger inflammation to destroy them, are often involved in inflammatory diseases. When overactivated, they trigger an excessive inflammatory response that turns against the body instead of protecting it.