. Scientific Frontline

Monday, November 21, 2022

New chainsaw drone technology deployed to fight Rapid ʻŌhiʻa Death


A new aerial chainsaw device that could assist in the battle to save Hawaiʻi’s ʻōhiʻa trees from a deadly fungal pathogen is being put to the test by a University of Hawaiʻi at Hilo geographer. Professor Ryan Perroy and his research team have developed a drone attachment capable of sampling tree branch samples for diagnostic laboratory testing and other purposes.

The device consists of a small rotating chainsaw with a robotic gripper claw mounted beneath the drone

The device, named Kūkūau, consists of a small rotating chainsaw with a robotic gripper claw mounted beneath a drone, and can cut and retrieve branches up to seven centimeters in diameter. The samples are collected for diagnostic testing of forest fungal pathogens, including those responsible for Rapid ʻŌhiʻa Death (ROD).

“There have been times when we detected an ʻōhiʻa tree suspected of infection with the pathogens responsible for Rapid ʻŌhiʻa Death, but because of the location, it was too dangerous or problematic to send field crews out to sample it for confirmation,” said Perroy. “Kūkūau has the potential to help in those types of situations.”

Scientists estimate the weight of two giant extinct amphibians

Artist’s reconstruction of Eryops megacephalus (left) and Paracyclotosaurus davidi (right).
Image Credit: Josè Vitor Silva.

A team of Australian scientists led by UNSW Sydney paleontologist Lachlan Hart has calculated the body mass of two ancient amphibians.

The last of the temnospondyls – amphibians that look more like crocodiles – became extinct during the Cretaceous period, about 120 million years ago, after thriving on Earth for more than 200 million years.

Now a team of scientists led by Lachlan Hart, a paleontologist and PhD candidate in the School of Biological, Earth & Environmental Sciences at UNSW Sydney, has assessed various methods of estimating the weight of these unique extinct animals. The team’s study is published in the journal Paleontology.

“Estimating mass in extinct animals presents a challenge, because we can’t just weigh them like we could with a living thing,” said Mr. Hart. “We only have the fossils to tell us what an animal looked like, so we often need to look at living animals to get an idea about soft tissues, such as fat and skin.”

Simplified process shines light on new catalyst opportunities

Members of the research team at the Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University. Top Row, Left to Right: Satoshi Maeda, Yu Harabuchi, Hiroki Hayashi, Hitomi Katsuyama. Bottom Row, left to right: Wataru Kanna, Hideaki Takano, Tsuyoshi Mita
Photo Credit: ICReDD

Theory-guided development of an easier, more versatile process for synthesizing unsymmetric ligands provides new avenues of exploration in transitional metal catalysis.

Researchers at the Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) have discovered the key to synthesizing a molecular tool that could greatly expand the variety of catalytic reactions possible with transition metals. The team has taken a well-established set of compounds that can be used to make transition metal catalysts and developed a simple, radical-based reaction for creating unsymmetric variants of these molecules using mild conditions. Easier access to a wider variety of these unsymmetric compounds opens a realm of new possibilities for designing transition metal catalysts.

The focus of this research is on a class of compounds called 1,2-bis(diphenylphosphino)ethane derivatives (DPPEs). DPPEs are bidentate — i.e., they attach to the metal center of a catalyst in two locations. However, DPPEs have typically been symmetric, with each attachment arm being the same, which limits the possible structural variety and reactivity. This study overcomes that limit, reporting on a versatile method for developing unsymmetric DPPEs using ethylene, an abundantly available feedstock chemical.

Sunday, November 20, 2022

Electronic/Photonic Chip Sandwich Pushes Boundaries of Computing and Data Transmission Efficiency

Image: The chip sandwich: an electronics chip (the smaller chip on the top) integrated with a photonics chip, sitting atop a penny for scale.
Photo Credit: Arian Hashemi Talkhooncheh

Engineers at Caltech and the University of Southampton in England have collaboratively designed an electronics chip integrated with a photonics chip (which uses light to transfer data)—creating a cohesive final product capable of transmitting information at ultrahigh speed while generating minimal heat.

Though the two-chip sandwich is unlikely to find its way into your laptop, the new design could influence the future of data centers that manage very high volumes of data communication.

"Every time you are on a video call, stream a movie, or play an online video game, you're routing data back and forth through a data center to be processed," says Caltech graduate student Arian Hashemi Talkhooncheh (MS '16), lead author of a paper describing the two-chip innovation that was published in the IEEE Journal of Solid-State Circuits. "There are more than 2,700 data centers in the U.S. and more than 8,000 worldwide, with towers of servers stacked on top of each other to manage the load of thousands of terabytes of data going in and out every second."

Just as your laptop heats up on your lap while you use it, the towers of servers in data centers that keep us all connected also heat up as they work, just at a much greater scale. Some data centers are even built underwater to cool the whole facility more easily. The more efficient they can be made, the less heat they will generate, and ultimately, the greater the volume of information that they will be able to manage.

Saturday, November 19, 2022

Lung infections caused by soil fungi are a problem nationwide

The fungus Histoplasma, which causes lung infections, was concentrated in the Midwest in the 1950s and '60s (top map), but now causes significant disease throughout much of the country (bottom). Researchers at Washington University School of Medicine in St. Louis discovered that the three main kinds of soil fungi that cause lung infections have all expanded their ranges in recent decades. Reliance on outdated maps could be causing delayed or missed diagnoses.
Image Credit: Patrick Mazi and Andrej Spec

Fungi in the soil cause a significant number of serious lung infections in 48 out of 50 states and the District of Columbia, including many areas long thought to be free of deadly environmental fungi, according to a study by researchers at Washington University School of Medicine in St. Louis.

Studies from the 1950s and ’60s indicated that fungal lung infections were a problem only in certain parts of the country. The new study, available online in the journal Clinical Infectious Diseases, shows that is no longer the case. Doctors who rely on outdated maps of disease-causing fungi may miss the signs of a fungal lung infection, resulting in delayed or incorrect diagnoses, the researchers said.

“Every few weeks I get a call from a doctor in the Boston area — a different doctor every time — about a case they can’t solve,” said senior author Andrej Spec, MD, an associate professor of medicine and a specialist in fungal infections. “They always start by saying, ‘We don’t have histo here, but it really kind of looks like histo.’ I say, ‘You guys call me all the time about this. You do have histo.’”

Zebrafish are smarter than we thought

A new study from MIT and Harvard University suggests that the brains of the seemingly simple zebrafish are more sophisticated than previously thought. The researchers found that larval zebrafish can use visual information to create three-dimensional maps of their physical surroundings.
Photo Credit: Petr Kuznetsov

A new study from MIT and Harvard University suggests that the brains of the seemingly simple zebrafish are more sophisticated than previously thought. The researchers found that larval zebrafish can use visual information to create three-dimensional maps of their physical surroundings — a feat that scientists didn’t think was possible.

In the new study, the researchers discovered that zebrafish can move around environmental barriers while escaping predators. The findings suggest that zebrafish are “much smarter than we thought,” and could be used as a model to explore many aspects of human visual perception, the researchers say.

“These results show you can study one of the most fundamental computational problems faced by animals, which is perceiving a 3D model of the environment, in larval zebrafish,” says Vikash Mansinghka, a principal research scientist in MIT’s Department of Brain and Cognitive Sciences and an author of the new study.

Andrew Bolton, an MIT research scientist and a research associate at Harvard University, is the senior author of the new study, which appears in the journal Current Biology. Hanna Zwaka, a Harvard postdoc, and Olivia McGinnis, a recent Harvard graduate who is now a graduate student at the Oxford University, are the paper’s lead authors.

Amphibian Population Decreased Rapidly in the Last Three Years

Lake frogs are among the largest modern amphibians.
Photo Credit: Ilya Safarov

Biologists have recorded severe simultaneous drops in the numbers of three different species of frogs and newts - rare and widespread. The largest population declines occurred among juveniles, but the scientists noted that adults and egg clutches were also affected. The description and results of the study are published in the journal Conservation Science and Practice.

"We believe that a wide range of anthropogenic adverse factors combined with natural fluctuations are responsible for the population decline. Among the causes are global warming, pathogenic infections, habitat loss and exposure to agro-industrial chemicals. But the main reason is drought: reduced precipitation led to a shortage of water in reservoirs and increased water temperature, which ultimately affected the amphibian population," explains Vladimir Vershinin, co-author of the work, Head of the Department of Biodiversity and Bioecology of Ural Federal University, Head of the Laboratory of Functional Ecology of Terrestrial Animals of the Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Science.

How the body's own cannabinoids far-range the bronchi

The research team led by Prof. Dr. Daniela Wenzel, Dr. Michaela Matthey, Alexander Seidinger and Annika Simon (from left) want to know how the bronchi can be set far.
Photo Credit: RUB, Marquard

Narrowing the bronchi makes many lung diseases like asthma so dangerous. Researchers have discovered a new signaling pathway that leads to the expansion of the respiratory tract.

Inhalation drugs against asthma and other obstructive pulmonary diseases often decrease in their effects after prolonged use. A research team led by Prof. Dr. Daniela Wenzel from the Department of Systems Physiology at the Ruhr University Bochum was now able to show an alternative signal path through which the body's own cannabinoids lead to the bronchi being expanded. This raises hopes for alternative treatment options. Asthma also appears to be associated with a lack of these cannabinoids in the bronchi, which could be one of the causes of the disease. The research team reports in the journal Nature Communications.

The bronchi are far from the body's own cannabinoids

Obstructive lung diseases are the third leading cause of death worldwide. These include, for example, the chronic obstructive pulmonary disease COPD, from which many smokers suffer, but also bronchial asthma. In an asthma attack, the bronchi contracts so strongly that exhalation is no longer possible - this can be life-threatening. "Asthma is an inflammatory process, but the narrowing of the bronchi is fatal," explains Annika Simon, first author of the study. “That is why we are particularly interested in regulating this narrowing."

What Darwin would discover today

Filmmaker Victor Rault set sail from Plymouth on the Captain Darwin in 2021, following in the footsteps of Darwin's HMS Beagle. He wants to explore how the ecosystem has changed since Darwin's voyage in 1832.
Photo Credit: Victor Rault / Captain Darwin 

"If Charles Darwin had had the opportunity to dive off the Cape Verde Islands, he would have been completely thrilled", Eduardo Sampaio is convinced, because Darwin would have seen a fascinating, species-rich landscape. But he lacked diving equipment. Thus, in his notes The Voyage of the Beagle, Darwin described Cape Verde as a barren landscape.

Eduardo Sampaio, affiliate member of the Cluster of Excellence "Centre for the Advanced Study of Collective Behavior" (CASCB) at the University of Konstanz, had quite the opposite experience. He was invited on board the ship Captain Darwin by filmmaker Victor Rault to continue his octopus research.

Victor Rault, 30, set sail from Plymouth on the Captain Darwin in 2021, following in the footsteps of Darwin's HMS Beagle. He wants to explore how the ecosystem has changed since Darwin's voyage on the HMS Beagle in 1832. Researchers and citizens have been invited to travel along and conduct experiments in the spirit of Darwin. "When Victor told me about his project, I was baffled", recalls biologist Eduardo Sampaio from Portugal. He says: "It was immediately clear to me that it's an excellent idea to retrace the path of Charles Darwin. I was more than keen to jump on board!"

Newly Developed Gene Classifier Identifies Risk of Breast Pre-Cancer Progression

Photo Credit: Angiola Harry

A team of researchers mapping a molecular atlas for ductal carcinoma in situ (DCIS) has made a major advance toward distinguishing whether the early pre-cancers in the breast will develop into invasive cancers or remain stable.

Analyzing samples from patients who had undergone surgery to remove areas of DCIS, the team identified 812 genes associated with cancer progression. Using this gene classifier, they were then able to predict the risk of cancer cells recurring or progressing.

The study, which was published this week in the journal Cancer Cell, was led by E. Shelley Hwang, M.D., of the Duke Cancer Institute, and Rob West, M.D., Ph.D., of the Stanford University Medical Center. Their work is part of the Human Tumor Atlas Network under the Moonshot Initiative funded by the National Cancer Institute.

“There has been a long-standing debate over whether DCIS is cancer or a high-risk condition,” Hwang said. “In the absence of a way to make that determination, we currently treat everyone with surgery, radiation, or both.

“DCIS is diagnosed in more than 50,000 women a year, and about a third of those women have a mastectomy, so we are increasingly concerned that we might be overtreating many women,” Hwang said. “We need to understand the biology of DCIS better, and that’s what our research has been designed to do.”

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles