 |
Spike glycoprotein structure of SARS-CoV, the coronavirus causing the 2002 outbreak. When linoleic acid is bound, the structure is locked in a non-infectious form. The cryo-EM density, calculated by cloud computing, is shown (left) along with the protein structure (middle). Linoleic acid molecules are colored orange. A zoom-in of the pocket (boxed), conserved in all deadly coronaviruses, is shown Illustration Credit: Christiane Schaffitzel and Christine Toelzer, University of Bristol |
Scientists have discovered why some coronaviruses are more likely to cause severe disease, which has remained a mystery, until now. Researchers of the University of Bristol-led study, published in
Science Advances today [23 November], say their findings could lead to the development of a pan-coronavirus treatment to defeat all coronaviruses—from the 2002 SARS-CoV outbreak to Omicron, the current variant of SARS-CoV-2, as well as dangerous variants that may emerge in future.
In this new study, an international team, led by Bristol's Professor Christiane Schaffitzel, scrutinized the spike glycoproteins decorating all coronaviruses. They reveal that a tailor-made pocket feature in the SARS-CoV-2 spike protein, first discovered in 2020, is present in all deadly coronaviruses, including MERS and Omicron. In striking contrast, the pocket feature is not present in coronaviruses which cause mild infection with cold-like symptoms.
The team say their findings suggest that the pocket, which binds a small molecule, linoleic acid—an essential fatty acid indispensable for many cellular functions including inflammation and maintaining cell membranes in the lungs so that we can breathe properly—could now be exploited to treat all deadly coronaviruses, at the same time rendering them vulnerable to a linoleic acid-based treatment targeting this pocket.