![]() |
Hammerhead Shark Photo Credit: David Clode |
The first-ever chromosome-level genome sequences completed for great hammerhead and shortfin mako sharks have shown that both species have experienced major population declines over a 250,000-year history. Low genetic diversity and signs of inbreeding add a layer of concern to the management of Critically Endangered great hammerhead sharks, whose populations have been in freefall recently due to overfishing for their highly valued fins. In contrast, with a larger effective population size (the ideal breeding population size) in the past and higher genetic diversity, shortfin mako sharks appear equipped to be more resilient to rapid environmental change: that is, if the current fishing pressure on them is substantially reduced.
“With their whole genomes deciphered at high resolution we have a much better window into the evolutionary history of these endangered species,” said Mahmood Shivji, Ph.D., professor at Nova Southeastern University’s (NSU) Halmos College of Arts and Sciences and director of the Save Our Seas Foundation Shark Research Center and NSU’s Guy Harvey Research Institute.
It’s a startling image that describes a milestone in conservation science for sharks. Shivji, Michael Stanhope, Ph.D., from Cornell University’s College of Veterinary Medicine and their collaborators have glanced back in history by sequencing to chromosome level the genomes (entire genetic blueprint) of great hammerhead and shortfin mako sharks. Their DNA timeline shows that their populations have declined substantially over 250,000 years. What the scientists have also found is worrying: great hammerhead sharks have low genetic variation, which makes them less resilient to adapting to our rapidly changing world. The species also shows signs of inbreeding, an issue that can lower the ability of its populations to survive.