![]() |
Professor Chase Beisel and Dr. Oleg Dmytrenko in the Würzburg HIRI laboratory. Photo Credit: HIRI |
Like a Swiss Army knife: a newly discovered component of bacterial immune defense paralyzes infected cells. He could advance molecular biological diagnostics.
Bacteria can also be infected by viruses, and they have developed their own immune defense strategies in this case. Bacterial defense systems such as CRISPR-Cas have various proteins and functions that help the bacteria protect themselves against intruders.
The defense is based on a common basic mechanism: a CRISPR ribonucleic acid (crRNA), which serves as a "lead RNA", helps to identify regions of a foreign genome, such as the DNA of a virus, in order to make them specifically harmless. The nuclease led by a crRNA can cut its target like scissors. It is a strategy of nature that humans have made use of technologically in a variety of ways.
"When you consider how well different nucleases have been implemented in new and improved technologies, any discovery in this area could bring new benefits to society," Professor Chase Beisel describes a research motivation of his laboratory at the Helmholtz Institute for RNA-based in Würzburg Infection research (HIRI). The facility is a location of the Helmholtz Center for Infection Research in Braunschweig in cooperation with the Julius Maximilians University, to which Chase Beisel is the head of the chair for synthetic RNA biology.