![]() |
New experiences are absorbed into neural representations over time, symbolized here by a hyperboloid hourglass. Illustration Credit: Salk Institute |
Salk researchers find that neural networks responsible for spatial perception change in a nonlinear manner and may have implications for neurodegenerative disorders like Alzheimer’s disease
Young children sometimes believe that the moon is following them, or that they can reach out and touch it. It appears to be much closer than is proportional to its true distance. As we move about our daily lives, we tend to think that we navigate space in a linear way. But Salk scientists have discovered that time spent exploring an environment causes neural representations to grow in surprising ways.
The findings, published in Nature Neuroscience show that neurons in the hippocampus essential for spatial navigation, memory, and planning represent space in a manner that conforms to a nonlinear hyperbolic geometry—a three-dimensional expanse that grows outward exponentially. (In other words, it’s shaped like the interior of an expanding hourglass.) The researchers also found that the size of that space grows with time spent in a place. And the size is increasing in a logarithmic fashion that matches the maximal possible increase in information being processed by the brain.