. Scientific Frontline

Monday, January 23, 2023

Anti-aging gene shown to rewind heart age by 10 years

Centenarian
Photo Credit: Mehmet Turgut Kirkgoz

An anti-aging gene discovered in a population of centenarians has been shown to rewind the heart’s biological age by ten years. The breakthrough, published in Cardiovascular Research and led by scientists at the University of Bristol and the MultiMedica Group in Italy, offers a potential target for patients with heart failure.

Associated with exceptional longevity, carriers of healthy mutant genes, like those living in blue zones of the planet, often live to 100 years or more and remain in good health. These individuals are also less prone to cardiovascular complications. Scientists funded by the British Heart Foundation believe the gene helps to keep their hearts young by protecting them against diseases linked to aging, such as heart failure.

In this new study, researchers demonstrate that one of these healthy mutant genes, previously proved particularly frequent in centenarians, can protect cells collected from patients with heart failure requiring cardiac transplantation.

Avian flu could decimate Australian black swans

Australian black swan
UQ research shows black swans lack some immune genes which help other wild waterfowl combat avian flu.
Photo Credit: Holger Detje

The unique genetics of the Australian black swan leaves the species vulnerable to viral illnesses such as avian flu, University of Queensland research has revealed.

The UQ-led study has generated a first-ever genome of the black swan which revealed the species lacks some immune genes which help other wild waterfowl combat infectious diseases.

Associate Professor Kirsty Short from UQ’s School of Chemistry and Molecular Biosciences said the geographic isolation of Australia’s black swans has meant limited exposure to pathogens commonly found in other parts of the world leading to reduced immune diversity.

“Unlike Mallard ducks for example, black swans are extremely sensitive to highly pathogenic avian influenza – HPAI which is often referred to as bird flu - and can die from it within three days,” Dr Short said.

Grassland Ecosystems Become More Resilient with Age

In diverse plant communities, evolution increases the division of labor between species over time.
Photo Credit: Alexandra Weigelt

Reduced biodiversity affects the stability of the entire ecosystem. A long-term experiment now shows that grassland plant communities with multiple species need about 10 years to adjust to each other and produce an even amount of biomass again.

Recent experiments have shown that the loss of species from a plant community can reduce ecosystem functions and services such as productivity, carbon storage and soil health. This reduced functioning may also destabilize the ecosystem in its ability to maintain ecosystem functions and services in the long term. However, assessing this is only possible if experiments can be maintained for a sufficient length of time.

Stable biomass production after 10 years

In a new study, researchers from the University of Zurich and colleagues from Leipzig and Jena analyzed the stability of plant biomass production over two decades in one of the longest-running grassland biodiversity experiments in the world, the Jena Experiment in Germany. After more than a decade, plant species in more diverse experimental communities complemented each other in producing stable biomass at the community level. At low plant diversity, by contrast, this “compensatory” effect was observed and community biomass varied much more from year to year. During the first decade of the experiment, species-rich communities had not yet stabilized because of large fluctuations in species populations. This long-term research shows that biodiversity plays an increasingly important role in stabilizing ecosystem productivity over time as plant communities mature.

Sunday, January 22, 2023

Stanford Medicine researchers measure thousands of molecules from a single drop of blood

A single drop of blood can yield measurements for thousands of proteins, fats and other biomarkers, researchers at Stanford Medicine found.
Photo Credit: PublicDomainPictures

Researchers at Stanford Medicine have shown they can measure thousands of molecules — some of which are signals of health — from a single drop of blood.

The new approach combines a microsampling device — a tool used to self-administer a finger prick — with “multi-omics” technologies, which simultaneously analyze a vast array of proteins, fats, by-products of metabolism and inflammatory markers.

“Even more importantly, we’ve shown you can collect the blood drop at home and mail it into the lab,” said Michael Snyder, PhD, director of the Center for Genomics and Personalized Medicine and senior author on the research, which was published in Nature Biomedical Engineering on Jan. 19.

Unlike finger-prick testing for diabetes, which measures a single type of molecule (glucose), multi-omics microsampling gives data about thousands of different molecules at once.

The research sounds similar to a well-known approach promoted in the past for testing a single drop of blood, but there are important differences: While the earlier approach was based on replicating existing diagnostic tests, multi-omic microsampling uses a different type of data analysis based on a technology called mass spectrometry, which sorts molecules based on their mass and electronic charge. In addition, the data analysis is performed in a lab, not in a portable box.

Removing water, stains, contaminants with hydrogel beads

Snapshots of the hydrogel bead impacting the droplet causing the droplet to lift off the surface.
Photo Credit: Courtesy of University of Hawaiʻi

There may be a more efficient future for water repellent materials and methods thanks to new research from the University of Hawaiʻi at Mānoa College of Engineering. Associate Professor John S. Allen III and an international team of researchers have discovered a method to remove liquid from non-stick surfaces using hydrogel beads, a material similar to gel cap medications.

“Ever want to remove a puddle completely without touching it? How about removing staining coffee off your clothes? Do you know that all the dangerous contaminants are off the surface? All these might be facilitated with low-cost hydrogel beads in the future,” Allen explained.

For a variety of everyday and industrial waterproof/water resistant objects, it is important to reduce the contact time of an impacting water or liquid drop with the surface. Many people are familiar with water repellent coating on buildings and on clothing. Repellants are also used to mitigate icing on a plane, as bouncing droplets are less likely to have time to freeze.

Traded species have distinctive life histories with extended reproductive lifecycles

Chameleon
Invasive species can cause huge environmental problems and monetary costs
Photo Credit: Pierre Bamin

A new study by researchers from Durham University, UK, Queen’s University Belfast, UK, University of Extremadura, Spain and Swansea University, UK have revealed that vertebrate species involved in the live wildlife trade have distinctive life history traits, biological characteristics that determine the frequency and timing of reproduction.

Researchers discovered that traded species produce large numbers of offspring across long reproductive lifespans, an unusual profile that is likely financially advantageous for trades involving captive breeding such as the pet, food and fur/skin trades.

Traded species that have also been introduced into non-native areas have a more extreme version of this same life history profile, suggesting that species most likely to become problematic invaders are at a heightened risk of trade and release.

The study suggests that humans favor species with high reproductive output for trade and release, which are the very species likely to become problematic invaders in future.

Researchers point out that life history traits are therefore potentially useful for predicting future invasions.

Saturday, January 21, 2023

DARPA Selects Aurora Flight Sciences for Phase 2 of Active Flow Control X-Plane

DARPA CRANE X-Plane configuration in development for flight testing Active Flow Control (AFC) technologies
Image Credit: Defense Advanced Research Projects Agency

DARPA has selected Aurora Flight Sciences to move into the detailed design phase of the Control of Revolutionary Aircraft with Novel Effectors (CRANE) program. This follows successful completion of the project’s Phase 1 preliminary design, which resulted in an innovative testbed aircraft that used active flow control (AFC) to generate control forces in a wind tunnel test. Phase 2 will focus on detailed design and development of flight software and controls, culminating in a critical design review of an X-plane demonstrator that can fly without traditional moving flight controls on the exterior of the wings and tail.

The contract includes a Phase 3 option in which DARPA intends to fly a 7,000-pound X-plane that addresses the two primary technical hurdles of incorporation of AFC into a full-scale aircraft and reliance on it for controlled flight. Unique features of the demonstrator aircraft will include modular wing configurations that enable future integration of advanced technologies for flight testing either by DARPA or potential transition partners.

Friday, January 20, 2023

Sikorsky Delivers 5,000th “Hawk,” Highlights Versatility And Future Of Iconic Helicopter

Sikorsky marks the delivery of the 5,000th “Hawk” helicopter, a UH-60M (pictured), at its headquarters in Stratford, Conn., Jan. 20, 2023.
Resized Image using AI by SFLORG
Photo Credit: Courtesy Sikorsky, a Lockheed Martin company.

Sikorsky, a Lockheed Martin company (NYSE: LMT), today delivered its 5,000th “Hawk” variant helicopter, a U.S. Army UH-60M Black Hawk. The iconic aircraft will continue to support medium-lift requirements for the U.S. military and international operators for decades into the future.

Sikorsky celebrates its 100th anniversary this year.

“Sikorsky, as a company, has been forged by the Black Hawk,” said Sikorsky President Paul Lemmo. “The Black Hawk and its variants deliver when reliability and performance are nonnegotiable. Hawk aircraft continue to demonstrate their versatility and readiness with the latest technological advancements and ongoing U.S. and global investment in the aircraft.”

Customers worldwide depend on the Black Hawk platform and its derivatives, including MH-60R/S maritime operations helicopters, MH-60T multi-mission helicopters, HH-60W rescue helicopters and internationally built S-70 Black Hawks to include the baseline FIREHAWK, which have all proven their versatility and capability across a spectrum of challenging mission sets.

Ripples in the fabric of the universe may reveal the start of time

Numerical simulation of the neutron stars merging to form a black hole, with their accretion disks interacting to produce electromagnetic waves.
Illustration Credit: L. Rezolla (AEI) & M. Koppitz (AEI & Zuse-Institut Berlin

Scientists have advanced in discovering how to use ripples in space-time known as gravitational waves to peer back to the beginning of everything we know. The researchers say they can better understand the state of the cosmos shortly after the Big Bang by learning how these ripples in the fabric of the universe flow through planets and the gas between the galaxies.

“We can’t see the early universe directly, but maybe we can see it indirectly if we look at how gravitational waves from that time have affected matter and radiation that we can observe today,” said Deepen Garg, lead author of a paper reporting the results in the Journal of Cosmology and Astroparticle Physics. Garg is a graduate student in the Princeton Program in Plasma Physics, which is based at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL).

Garg and his advisor Ilya Dodin, who is affiliated with both Princeton University and PPPL, adapted this technique from their research into fusion energy, the process powering the sun and stars that scientists are developing to create electricity on Earth without emitting greenhouse gases or producing long-lived radioactive waste. Fusion scientists calculate how electromagnetic waves move through plasma, the soup of electrons and atomic nuclei that fuels fusion facilities known as tokamaks and stellarators.

Unprecedented Levels of High-Severity Fire Burn in Sierra Nevada Forests

A firefighter helps containment efforts during the Creek Fire response in 2020.
Photo Credit: USDA, Pacific Southwest Forest Service

High-severity wildfire is increasing in Sierra Nevada and Southern Cascade forests and has been burning at unprecedented rates compared to the years before Euro-American settlement, according to a study from the Safford Lab at the University of California, Davis, and its collaborators. Those rates have especially shot up over the past decade. 

For the study, published in the journal Ecosphere, scientists analyzed fire severity data from the U.S. Forest Service and Google Earth Engine, across seven major forest types. 

They found that in low- and middle-elevation forest types, the average annual area that burned at low-to-moderate severity has decreased from more than 90% before 1850 to 60-70% today. 

At the same time, the area burned annually at high severity has nearly quintupled, rising from less than 10% to 43% today. (High-severity burns are those where more than 95% of aboveground tree biomass is killed by fire.)

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles