. Scientific Frontline

Tuesday, February 21, 2023

Cohesion and connection drop in ageing population

A social network of macaques grooming each other on Cayo Santiago.
Photo Credit: Lauren Brent

Social cohesion and connection decline in an ageing population, according to a new study of one of humanity’s closest relatives.

For decades, researchers have been observing the rhesus macaques on Cayo Santiago (known as “Monkey Island”) in Puerto Rico.

Recent research showed that female macaques “actively reduce” the size of their social networks and prioritize existing connections as they age – something also seen in humans.

The new study, by an international team led by the University of Exeter, examines how this affects the overall cohesion and connection of the groups older monkeys live in.

While the observed macaque populations (which had no more than 20% “old” individuals) were not affected at group level, computer simulations showed higher proportions of old macaques would reduce cohesion and connection.

Salt Could Play Key Role in Energy Transition

Large underground salt formations can aid in the energy transition in myriad ways.
Illustration Credit: UT Jackson School of Geosciences.

A common ingredient – salt – could have a big role to play in the energy transition to lower carbon energy sources.

That’s according to a new study led by researchers at The University of Texas at Austin’s Bureau of Economic Geology.

The study describes how large underground salt deposits could serve as hydrogen holding tanks, conduct heat to geothermal plants, and influence CO2 storage. It also highlights how industries with existing salt expertise, such as solution mining, salt mining, and oil and gas exploration, could help.

“We see potential in applying knowledge and data gained from many decades of research, hydrocarbon exploration, and mining in salt basins to energy transition technologies,” said lead author Oliver Duffy, a research scientist at the bureau. “Ultimately, a deeper understanding of how salt behaves will help us optimize design, reduce risk, and improve the efficiency of a range of energy transition technologies.”

The study was published in the journal Tektonika.

New Hope for People Living with Paralysis after Stroke

Video Credit: Carnegie Mellon University

Globally, every fourth adult over the age of 25 will suffer a stroke in their lifetime, and 75% of those people will have lasting deficits in fine motor control. Until now, treating paralysis in the so-called chronic stage, which begins six months after the stroke, has remained ineffective.

Technology developed by Douglas Weber, the Akhtar and Bhutta Professor of Mechanical Engineering and the Neuroscience Institute at Carnegie Mellon University in collaboration with the University of Pittsburgh is offering new hope for people living with impairments that would otherwise be considered permanent. The team discovered that muscles respond directly to electrical stimulation of specific spinal cord regions enabling patients to regain mobility of their arm and hand.  

Spinal cord stimulation technology uses a set of electrodes placed on the surface of the spinal cord to deliver pulses of electricity that activate the nerve cells inside. Research groups around the world have shown that this stimulation can be used to restore movement to the legs, but the complexity of the neural signals controlling the unique dexterity of the human hand and arm adds a significantly higher set of challenges.

So-called ‘safe’ pesticides have surprising ill effects

When the chemicals you use to protect crops harm their pollinators
Photo Credit: Sandy Millar

Health Canada is currently reviewing regulations for pesticides in Canada, and three UBC researchers say regulators might want to consider what happened in Japan.

A lake in Shimane Prefecture has seen its commercial fishery collapse by more than 90 per cent since 1993, when insecticides known as neonicotinoids were first introduced to the area. It just so happens that zooplankton—the tiny creatures in the water that fish feed on—declined by 83 per cent during the same period.

That’s just one example of the unanticipated ripple effects of pesticides uncovered by UBC ecologists Dr. Risa Sargent, Dr. Juli Carrillo and Dr. Claire Kremen in their review of recent science.

They also found concerning research about glyphosates. Use of this weed-killer has increased 100-fold in recent decades. Because it targets an enzyme that exists only in plants, it was thought to be perfectly safe for animals. However, a study last year showed that it alters the mix of bacteria and microbes in bees’ intestines, while also disrupting their ability to keep hives at the optimum temperature.

New insights into fetal development may protect against leukemia

Right to Left: Mohamed Eldeeb, doctoral student, Division of Molecular Hematology. David Bryder, Professor of experimental hematology, Division of Molecular Hematology.
Photo Credit: Courtesy of Lund University

During the fetal stage, a number of so-called cell programs run that are vital to the development of the fetus. In a study published in Cell Reports, researchers from Lund University demonstrate that one of these fetal programs appears to protect against acute myeloid leukemia (AML).

“We have used an experimental mouse model that always results in this type of leukemia. The interesting thing is that, when we added to adult mice a specific molecular cell program that normally only runs during fetal development, over half did not develop AML,” says David Bryder, professor of experimental hematology at Lund University.

The fetal program that the researchers used consists of the RNA-binding protein LIN28, the normal function of which is to regulate other genes. LIN28 is usually only expressed during fetal development and disappears shortly after birth.

Hidden from the Romans: 200 tons of silver on the shores of the river Lahn

"Tractor Tracks".
The excavations in Bad Ems were initiated by J. Eigenbrod, who spotted suspicious traces in the field from his high seat. The traces constitute changes in the vegetation, indicating ground interventions, in this case the ditches of the Roman camp on the "Ehrlich"
Photo Credit: H.-J. du Roi

In their search for silver ore, the Romans established two military camps in the Bad Ems area near Koblenz in the 1st century AD. This is the result of research carried out as part of a teaching excavation that spanned several years and was carried out by Goethe University's Department of Archaeology and History of the Roman Provinces in cooperation with the federal state of Rhineland-Palatinate. Several surprising findings were made during the process. For one, the exciting research story earned young archaeologist Frederic Auth first place at the Wiesbaden Science Slam. 

When Prof. Markus Scholz, who teaches archaeology and the history of Roman provinces at Goethe University, returned to Bad Ems toward the end of the excavation work, he was astonished: After all, all the photos sent by his colleague Frederic Auth showed but a few pieces of wood. Not surprisingly, Scholz was ill-prepared for what he saw next: a wooden defense construction consisting of sharpened wooden stakes, designed to prevent the enemy's approach. The martial-looking structure was intended to deter enemies from attacking the camp. Such installations – comparable, if you will, to modern barbed wire – are referenced to in literature from the time. Caesar, for instance, mentioned them. But to date, none had been found. The damp soil of the Blöskopf area obviously provided the ideal conditions: The wooden spikes, which probably extended throughout the entire downward tapering ditch around the camp, were found to be well preserved. 

Unknown class of water-rich asteroids identified

Dwarf planet Ceres.
Image Credit: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / Justin Cowart

Small planets originate from the edge of our Solar System

New astronomical measurements in the infrared range have led to the identification of a heretofore unknown class of asteroids. An international research team including geoscientists from Heidelberg University has succeeded in characterizing these small planets using infrared spectroscopy. They are located in the asteroid belt between Mars and Jupiter and are – similar to the dwarf planet Ceres – rich in water. According to computer models, complex dynamic processes shifted these asteroids from the outer regions of our Solar System into today’s asteroid belt shortly after their creation.

With an equatorial diameter of approximately 900 kilometers, the dwarf planet Ceres is the largest object in the asteroid belt between Mars and Jupiter. Many other small planets orbit in this region as well. “These are the remains of the building materials from which the planets of our Solar System were created four and a half billion years ago. In these small bodies and their fragments, the meteorites, we find numerous relics that point directly to the process of planet formation,” explains Prof. Dr Mario Trieloff from the Institute of Earth Sciences of Heidelberg University. The current study shows that the small astronomical bodies originate from all regions of the early Solar System. By means of small bodies from the outer Solar System, water could have reached the still growing Earth in the form of asteroids, because the building blocks of the planets in the inner Solar System tended to be arid, according to Prof. Trieloff, who heads up the Geo- and Cosmochemistry research group.

Improving the Performance of Satellites in Low Earth Orbit


On-chip distributed radiation sensors and current-sharing techniques can be used to reduce the impact of radiation on the radio and power consumption of small satellites, respectively, as shown by scientists from Tokyo Tech. Their findings can be used to make small satellites more robust, which can increase the connectivity of networks across the globe.

A database updated in 2022 reported around 4,852 active satellites orbiting the earth. These satellites serve many different purposes in space, from GPS and weather tracking to military reconnaissance and early warning systems. Given the wide array of uses for satellites, especially in low Earth orbit (LEO), researchers are constantly trying to develop better ones. In this regard, small satellites have a lot of potential. They can reduce launch costs and increase the number of satellites in orbit, providing a better network with wider coverage. However, due to their smaller size, these satellites have lesser radiation shield. They also have a deployable membrane attached to the main body for a large phased-array transceiver, which causes non-uniform radiation degradation across the transceiver. This affects the performance of the satellite’s radio due to the variation in the strength of signal they can sense—also known as gain variation. Thus, there is a need to mitigate radiation degradation to make small satellites more viable.

Using sewage to forecast COVID-19 infections

Collecting samples at a wastewater treatment plant for the study
Photo Credit: provided by Masaaki Kitajima

Sifting through sewage for SARS-CoV-2 genetic material could help authorities tailor infection control policies.

A new mathematical model uses wastewater samples to effectively forecast the number of clinical COVID-19 cases in a community five days in advance. The approach was developed and validated by Hokkaido University environmental engineer, Masaaki Kitajima, and colleagues in Japan. It could help healthcare authorities better tailor infection control policies, especially when clinical surveillance is lacking. The researchers reported their findings in the journal Environment International

Testing wastewater samples for SARS-CoV-2 as a means to predict surges in clinical cases has been attracting attention. Scientists have been researching this approach since the beginning of the pandemic. However, current methods aren’t particularly sensitive and can only detect increasing cases without being able to forecast their numbers within a community.

Kitajima and his colleagues had already developed a method to detect SARS-CoV-2 RNA in wastewater samples. But this method requires solid material and does not work well with diluted wastewater on rainy days or with treated wastewater that has been clarified and is mostly liquid. So, they modified their approach. Instead of using low-speed centrifugation to create pellets from wastewater samples that then go on to be tested, they used special filters that can capture the viral RNA from diluted wastewater. This is followed by extracting RNA from the filter, amplifying it, and then running polymerase chain reaction (PCR) tests to detect it. They call the new method Efficient and Practical Virus Identification System with Enhanced Sensitivity for Membrane (EPISENS-M).

Monday, February 20, 2023

Lakes in Greenland collapse and release meltwater during winter causing Arctic inland ice drift to speed up

Lakes collapse and release meltwater during winter causing inland ice to speed up in Greenland
Photo Credit: Dominique Müller

A team of international researchers has shown for the first time how 18 meltwater lakes in Greenland collapse during winter which cause the edges of the ice to flow faster. The new knowledge is essential for understanding how climate change influences the flow of ice masses in the Arctic.

In the middle of winter in 2018, an almost 50-year-old meltwater lake disappeared from the ice sheet in western Greenland. The lake was covered by snow and ice when it collapsed but stored liquid water inside. The water disappeared into newly formed cracks and drifted down through the approximately 2 km thick layer of ice. The water hit the rock bed under the ice and flowed out from under the ice sheet towards the sea. This meltwater acted as lubrication between the rock bed and the thick ice on top. As a result, the large mass of ice could slide faster towards the coast, accelerating an unusually large region of inland ice. The drainage of this lake caused several other lakes in the adjacent area to collapse too. In total, the collapsed lakes have released approximately 180 million tons of meltwater that has ended up in the world's oceans.

This is shown by new international research based on satellite data and led by the French Université Grenoble Alpes with contributions from DTU Space at The Technical University of Denmark (DTU). This new knowledge has just been published in Geophysical Research Letters.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles