In a major breakthrough in the fields of nanophotonics and ultrafast optics, a Sandia National Laboratories research team has demonstrated the ability to dynamically steer light pulses from conventional, so-called incoherent light sources.
This ability to control light using a semiconductor device could allow low-power, relatively inexpensive sources like LEDs or flashlight bulbs to replace more powerful laser beams in new technologies such as holograms, remote sensing, self-driving cars and high-speed communication.
“What we’ve done is show that steering a beam of incoherent light can be done,” said Prasad Iyer, Sandia scientist and lead author of the research, which was reported in the current issue of the journal Nature Photonics.
Incoherent light is emitted by many common sources, such as an old-fashioned incandescent light bulb or an LED bulb. This light is called incoherent since the photons are emitted with different wavelengths and in a random fashion. A beam of light from a laser, however, does not spread and diffuse because the photons have the same frequency and phase and is thus called coherent light.