![]() |
Artist's conception of fast radio burst reaching Earth. Illustration Credit: Jingchuan Yu, Beijing Planetarium |
International team of scientists reports a possible correlation between gravitational waves from neutron star mergers and fast radio bursts; results could improve understanding of how some deep-space bursts occur.
The secrets of deep space may be starting to reveal themselves, as rapid advances in technology and stronger research collaborations are making it possible for astronomers to piece together cosmological clues like never before.
In the March 27 issue of the journal Nature Astronomy, an international team of scientists shows for the first time a possible relationship between neutron star mergers and fast radio bursts (FRBs) – two of the most mysterious cosmological phenomena studied over the past two decades.
The team, which includes researchers from UNLV, University of Western Australia (UWA), and Curtin University, reports on the observation of a deep space neutron star merger followed just 2 ½ hours later by an observed FRB. If confirmed, the correlation between the two events could unlock part of the mystery of how FRBs are generated.
Fast radio bursts (FRBs) are millisecond-long pulses of electromagnetic radio waves that occur in deep space and produce the energy equivalent to the sun’s annual output. Most FRBs occur as one-off events, while others present as repeating bursts. Though their origins are still a bit of a mystery, the fraction of FRBs emitted as repeated bursts are likely produced by highly magnetized neutron stars known as magnetars.