![]() |
Dr. Jia-Jheng Kang prepares measurements for the vaccines at the KWS-2 sample site. Photo Credit: Bernhard Ludewig, FRM II / TUM |
Neutrons from the Research Neutron Source Heinz Maier-Leibnitz (FRM II) can be used to explore the structure of biomolecules. The most recent success: the precise analysis of a promising vaccine against multidrug resistant germs.
Bacteria which are resistant to all conventional antibiotics cause more than a million deaths each year. Consequently, researchers around the world are searching for new therapeutic approaches to combat these pathogens. Two years ago, an international team in Grenoble identified an active ingredient suitable for the production of a vaccine against multidrug resistant bacteria Pseudomonas aeruginosa. The vaccine has in the meantime been successfully tested on mice.
"As with many new vaccines, in this case the active ingredient is embedded in liposomes. The exact characterization and understanding of these nanoscopic biomolecules is a key factor in the development and optimization of future vaccines," says Dr. Marco Maccarini, biophysicist at the French National Centre for Scientific Research (CNRS). Together with experts at the TIMC laboratory of the Université Grenoble Alpes (UGA) and at the FRM II he has successfully analyzed the structure of the candidate vaccine against Pseudomonas aeruginosa.