. Scientific Frontline

Monday, April 17, 2023

A neuromorphic visual sensor can recognize moving objects and predict their path

Conventional sensors only capture a single moment in a frame, but the new sensor can read information about the past and use that to predict the future.
Illustration Credit: Hongwei Tan / Aalto University

A new bio-inspired sensor can recognize moving objects in a single frame from a video and successfully predict where they will move to. This smart sensor, described in a Nature Communications paper, will be a valuable tool in a range of fields, including dynamic vision sensing, automatic inspection, industrial process control, robotic guidance, and autonomous driving technology. 

Current motion detection systems need many components and complex algorithms doing frame-by-frame analyses, which makes them inefficient and energy-intensive. Inspired by the human visual system, researchers at Aalto University have developed a new neuromorphic vision technology that integrates sensing, memory, and processing in a single device that can detect motion and predict trajectories. 

Female butterflies breed despite male shortage

Monarch Butterfly
Photo Credit: Erin Minuskin

Female monarch butterflies have no trouble finding a mate – even when a parasite kills most of the males, new research shows.

Some females carry a parasite called Spiroplasma that kills all their male offspring, meaning highly infected populations have very few males.

But the new study – by the universities of Exeter, Rwanda and Edinburgh, and the Dian Fossey Gorilla Fund – found females mated about 1.5 times on average, regardless of how many males were around.

The male proportion dropped below 10% in some cases, but it appears the remaining hard-working males managed to breed with most of the available females.

10-20% of females remained unmated, only slightly higher than the expected average in a population with plenty of males (5-10%).

Natural flood prevention, higher trust through better communication

2013 flood on the Elbe near Dessau-Rosslau.
Photo Credit: André Künzelmann / UFZ

A UFZ study shows: If the population feels well informed, it has a more positive view towards nature-based flood prevention

In many places today, dikes are being moved back, and floodplains are being revitalized in order to give the river more space during times of flooding. This should make flood protection more effective and reduce the risk of flooding in inhabited areas. Nevertheless, natural flood prevention projects are often met with considerable resistance from the general population. Why is that? Researchers from the Helmholtz Centre for Environmental Research (UFZ) and the University of Potsdam have investigated this question in a social science study. They found that fear, personal experience of flooding, and a lack of information play a particular role in this. According to the research team, when flood protection measures are planned, the general population should be involved and informed as early as possible. The study was recently published in Risk Analysis.

There have been repeated flood disasters in Germany in recent decades. For example, in 2002 and 2013 along the Elbe and in 2021 in the Eifel region. As climate change progresses, severe floods are expected to occur more frequently. It is therefore important to quickly implement effective protection measures in vulnerable areas. 

Methane from megafires: more spew than we knew

Sky filled with wildfire pollution in 2020.
Photo Credit: Frausto-Vicencio/UCR

Using a new detection method, UC Riverside scientists found a massive amount of methane, a super-potent greenhouse gas, coming from wildfires — a source not currently being accounted for by state air quality managers. 

Methane warms the planet 86 times more powerfully than carbon dioxide over the course of 20 years, and it will be difficult for the state to reach its required cleaner air and climate goals without accounting for this source, the researchers said. 

Wildfires emitting methane is not new. But the amount of methane from the top 20 fires in 2020 was more than seven times the average from wildfires in the previous 19 years, according to the new UCR study. 

“Fires are getting bigger and more intense, and correspondingly, more emissions are coming from them,” said UCR environmental sciences professor and study co-author Francesca Hopkins. “The fires in 2020 emitted what would have been 14 percent of the state’s methane budget if it was being tracked.” 

The state does not track natural sources of methane, like those that come from wildfires. But for 2020, wildfires would have been the third biggest source of methane in the state. 

X-rays Reveal Electronic Details of Nickel-based Superconductors

Yao Shen, a postdoctoral researcher at Brookhaven Lab and first author of two papers describing the electronic structure of a nickel-based superconductor, at the SIX beamline of the National Synchrotron Light Source II (NSLS-II) where the experiments were done.
Photo Credit: Brookhaven National Laboratory

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered new details about the electrons in a nickel-based family of superconducting materials. The research, described in two papers published in Physical Review X, reveals that these nickel-based materials have certain similarities with—and key differences from—copper-based superconductors. Comparing the two kinds of “high-temperature” superconductors may help scientists zero in on key features essential for these materials’ remarkable ability to carry electrical current without losing energy as heat.

“The quest to understand high-temperature superconductors is a decades-old challenge,” said Mark Dean of Brookhaven Lab’s Condensed Matter Physics & Materials Science Department, who led the research described in both papers. Ever since copper-based, or cuprate, superconductors were discovered in the 1980s, scientists have been trying to understand what makes them tick.

The interest is driven in large part by their potential for energy-saving applications. Picture power lines that deliver electricity to homes far from wind and solar farms without losing a speck of energy, and computers and other devices that function flawlessly without the need for expensive and energy-intensive cooling.

New details of Tully monster revealed

The Tully monster.
Discovered in the 1950s and first described in a paper in 1966, the Tully monster, with its stalked eyes and long proboscis, is difficult to compare to all other known animal groups. Unique to Illinois in the U.S., it became its state fossil in 1989.
Image Credit: © 2023 Takahiro Sakono

For more than half a century, the Tully monster (Tullimonstrum gregarium), an enigmatic animal that lived about 300 million years ago, has confounded paleontologists, with its strange anatomy making it difficult to classify. Recently, a group of researchers proposed a hypothesis that Tullimonstrum was a vertebrate similar to cyclostomes (jawless fish like lamprey and hagfish). If it was, then the Tully monster would potentially fill a gap in the evolutionary history of early vertebrates. Studies so far have both supported and rejected this hypothesis. Now, using 3D imaging technology, a team in Japan believes it has found the answer after uncovering detailed characteristics of the Tully monster which strongly suggest that it was not a vertebrate. However, its exact classification and what type of invertebrate it was is still to be decided.

In the 1950s, Francis Tully was enjoying his hobby fossil hunting in a site known as Mazon Creek Lagerstätte in the U.S. state of Illinois, when he discovered what would later become known as the Tully monster. This 15-centimeter (on average), 300-million-year-old marine “monster” turned out to be an enigma, as ever since its discovery researchers have debated where it fits in the classification of living things (its taxonomic position). Unlike dinosaur bones and hard-shelled creatures that are often found as fossils, the Tully monster was soft-bodied. The Mazon Creek Lagerstätte is one of the few places in the world where the conditions were just right for imprints of these marine animals to be captured in detail in the underwater mud, before they could decay. In 2016, a group of scientists in the US proposed a hypothesis that the Tully monster was a vertebrate. If this was the case, then it could be a missing piece of the puzzle on how vertebrates evolved.

Saturday, April 15, 2023

2022 Tongan volcanic explosion was largest natural explosion in over a century

On January 14, 2022, at approximately 4:20am local time UTC a huge eruption occurred at the Hunga Tonga-Hunga Ha’apai underwater volcano, located about 65km (40 miles) north of Tonga’s capital, Nuku’alofa, which is part of a vast arc of volcanoes and ocean trenches known as the Pacific “Ring of Fire”. 
Image Credit: © 2022 European Space Agency - ESA, produced from ESA remote sensing data, image processed by ESA. Radiometrically enhanced by the University of Miami Center for Southeastern Tropical Advanced Remote Sensing (CSTARS)

The 2022 eruption of a submarine volcano in Tonga was more powerful than the largest U.S. nuclear explosion, according to a new study led by scientists at the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science and the Khaled bin Sultan Living Oceans Foundation.  

The 15-megaton volcanic explosion from Hunga Tonga-Hunga Ha'apai, one of the largest natural explosions in more than a century, generated a mega-tsunami with waves up to 45-meters high (148 feet) along the coast of Tonga’s Tofua Island and waves up to 17 meters (56 feet) on Tongatapu, the country’s most populated island.

Friday, April 14, 2023

Drug form of traditional Chinese medicine compound improved survival of mice with brain tumors

Indirubin is a natural product present in indigo plants and the active ingredient of the traditional Chinese medicine Dang Gui Long Hui Wan, which is used to treat chronic diseases.
Photo Credit: Courtesy of Brown University

A new study shows how a drug made from a natural compound used in traditional Chinese medicine works against malignant brain tumors in mice, creating a promising avenue of research for glioblastoma treatment.

In the study, published in Cell Reports Medicine, researchers showed how a formulation of the compound, called indirubin, improved the survival of mice with malignant brain tumors. They also tested a new formulation that was easier to administer, taking the potential pharmaceutical approach one step closer to clinical trials with human participants.  

“The interesting thing about this drug is that it targets a number of important hallmarks of the disease,” said Sean Lawler, lead author, associate professor of pathology and laboratory medicine, and researcher at the Legorreta Cancer Center of Brown University. “That's appealing because this type of cancer keeps finding ways around individual mechanisms of attack. So, if we use multiple mechanisms of attack at once, perhaps that will be more successful.”

New study finds that microplastics can help dangerous bacteria survive on beaches

Microplastics on the beach
Photo Credit: Vera Kratochvil

New research from the University of Stirling has found that dangerous bacteria are able to survive the journey from sewage treatment plants to beaches on microplastic pollution.

During their study, scientists from the University’s Faculty of Natural Sciences found drug-resistant bacteria colonizing microplastics on Scottish beaches.  

The findings could have global consequences, with an estimated 2.3 million tons of plastic pollution thought to be floating in the world’s oceans.

Lead researcher Rebecca Metcalf, supervised by Professor Richard Quilliam, conducted her research by subjecting microplastics colonized by bacteria in wastewater to the different environments that they would likely pass through on their way to our beaches. She found that not only could the bacteria such as E. coli survive the entire journey, but that viable bacteria also survived for seven days on the sand. 

Researchers invent novel ingestible capsule X-ray dosimeter for real-time radiotherapy monitoring

Prof Liu Xiaogang (left) and Dr Hou Bo from the NUS Department of Chemistry were key members of the team that developed the novel capsule dosimeter.
Photo Credit: National University of Singapore

Affordable and ingestible capsule monitors radiation dose, pH and temperature in the gastrointestinal tract in real time, and could benefit gastric cancer patients undergoing radiotherapy

Gastric cancer is one of the most common cancers worldwide. A new invention by researchers from the National University of Singapore (NUS) could help improve the treatment of this cancer by enhancing the precision of radiotherapy, which is commonly used in combination with treatment options such as surgery, chemotherapy or immunotherapy.

In the field of modern radiotherapy, precision in targeting tumor tissue while minimizing damage to healthy tissue is crucial. However, low efficacy and variable outcomes remain a challenge due to patient diversity, treatment uncertainty, and differences in delivery types. Monitoring the dose of radiation delivered and absorbed in real-time, particularly in the gastrointestinal tract, could enhance the precision of radiotherapy to improve its effectiveness, but it is difficult to achieve. Additionally, existing methods used for monitoring biochemical indicators such as pH and temperature are inadequate for comprehensive evaluation of radiotherapy.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles