![]() |
A protein-based COVID-19 vaccine developed by researchers at Stanford Medicine and their colleagues may be ideal for infants. Image Credit: Gerd Altmann |
In a study led by Stanford Medicine researchers, a low-cost COVID-19 vaccine that does not require refrigeration provided immunity in rhesus monkeys for one year.
A low-cost, protein-based COVID-19 vaccine tested in rhesus monkeys by Stanford Medicine researchers and colleagues offered immunity against known variants for at least one year. Researchers hope the vaccine, which can remain unrefrigerated for up to two weeks and may be especially beneficial for infants, will help alleviate the need for boosters while improving herd immunity around the world.
If the vaccine succeeds in human trials, it could be an alternative to the mRNA vaccines widely used for COVID-19, without drawbacks such as high expense and low-temperature storage requirements. Protein-based vaccines, which use protein fragments of the target virus rather than the whole virus, have been used for decades to protect against diseases such as shingles and hepatitis.
“Our motivation was to come up with a vaccine that would provide worldwide access to vaccination,” said Peter Kim, PhD, the Virginia and D.K. Ludwig Professor in Biochemistry. “In the case of the mRNA vaccines, for example, they are expensive, difficult to make and require storage in freezers. So, we wanted to solve those problems with this vaccine.”