. Scientific Frontline

Thursday, April 20, 2023

How bee-friendly is the forest?

A honeybee (Apis mellifera) collects honeydew on a fir tree. The study shows that the beech-dominated Steigerwald provides insufficient food resources for honeybees.
Photo Credit: Ingo Arndt

What role do forests play as a feeding habitat for honeybees? A team led by Würzburg biologist Dr. Benjamin Rutschmann investigated this question. For this purpose, the researchers used observation hives inside the Steigerwald.

Bees are generally associated with flowering meadows rather than with dense forests. Woodland, however, is considered the original habitat of the western honeybee (Apis mellifera), as it offers nesting sites in the form of tree cavities. Researchers at the Julius-Maximilians-Universität Würzburg (JMU) have now investigated the extent to which contemporary deciduous forests are suitable as foraging habitats for the busy insects.

For this purpose, Benjamin Rutschmann and Patrick Kohl installed twelve normally-sized honeybee colonies in observation hives across the Steigerwald – the respective proportion of forest in the surroundings varied for each bee colony. The two scientists conduct research at JMU in the Chair of Animal Ecology and Tropical Biology (Zoology III), which is headed by Professor Ingolf Steffan-Dewenter. The latter was also involved in the study, which has now appeared in the Journal of Applied Ecology.

Chicken breeding in Japan dates back to fourth century BCE

Red junglefowl, the species from which the chicken was domesticated
Photo Credit: Masaki Eda

Conclusive evidence of chicken breeding in the Yayoi period of Japan has been discovered from the Karako-Kagi site.

The chicken is one of the most common domesticated animals, with a current estimated population of over 33 billion individuals. They are reared for their meat and eggs, and may be kept as pets.

The chicken is believed to have been domesticated in Southeast Asia about 3500 years ago, following which they were carried to all corners of the world. The exact date of introduction of chicken breeding to Japan is under debate, as there are no historical records and archeological evidence is inconclusive.

Professor Masaki Eda at the Hokkaido University Museum led a team to uncover the earliest conclusive evidence of chicken breeding in Japan. The findings, which show chickens were bred in the Karako-Kagi site, a settlement from the Yayoi period [5th century BCE to around 2nd century BCE], were published in the journal Frontiers in Earth Sciences.

Dark order in the universe

3D position and shape information for each galaxy helped to measure the magnitude of alignment relative to distant galaxies
Illustration Credit: KyotoU/Jake Tobiyama

Einstein would nod in approval. General relativity may apply even in the farthest reaches of the universe.

Now, scientists from international research institutions, including Kyoto University, have confirmed that the intrinsic alignments of galaxies have characteristics that allow it to be a powerful probe of dark matter and dark energy on a cosmological scale.

By gathering evidence that the distribution of galaxies more than tens of millions of light years away is subject to the gravitational effects of dark matter, the team succeeded in testing general theory of gravity at vast spatial scales. The international team analyzed the positions and orientations of galaxies, acquired from archived data of 1.2 million galaxy observations. With the help of available 3D positional information of each galaxy, the resulting statistical analysis quantitatively characterized the extent to which the orientation of distant galaxies is aligned.

Wednesday, April 19, 2023

Groundbreaking Parkinson’s Research

Roxana Burciu’s Motor Neuroscience and Neuroimaging Lab is using custom-made MRI equipment that allows her to study the brain activity in people with lower limb symptoms of Parkinson’s disease.
Photo Credit: Ashley Barnas

Parkinson’s disease is a common neurodegenerative disorder that affects the way people move. Often beginning with small tremors in the hand, the disease progresses to affect a person’s gait and balance.

But the majority of what’s known about the brain changes underlying these symptoms stems from magnetic resonance imaging (MRI) studies focusing on the upper extremity.

“Gait and balance disturbance are common in Parkinson's disease and are a major contributor to increased disability and decreased quality of life,” said Roxana Burciu, an assistant professor of kinesiology and applied physiology in the University of Delaware College of Health Sciences. “To design efficient interventions that improve gait and balance, we need to gain a better understanding of how the brain controls the lower extremities.”

Because quality MRI scans depend on stillness of the patient, studying the brain changes in people with Parkinson’s disease who exhibit lower limb symptoms proves challenging. 

Particle trio exceeds expectations at LHC

Illustration Credit: ATLAS Experiment/CERN

The ATLAS experiment measured more than expected of a trio of particles in the aftermath of proton collisions. The results will refine physicists’ understanding of our universe at the subatomic level.

The ATLAS experiment has confirmed that a trio of particles – a top-antitop quark pair and a W boson –occurs more frequently than expected in the wake of proton-proton collisions inside the Large Hadron Collider (LHC). 

The process that creates these three particles post impact is quite rare: Only one out of every 50,000 collisions at the LHC produces the trio, known as ttW. After popping into existence, top quarks and W bosons are short lived and decay almost immediately, so the team identified ttW events based on the electrons and muons they decay into. 

Members of the ATLAS group at the Department of Energy's SLAC National Accelerator Laboratory have spent the last three years completing a complex analysis to measure the process, including developing novel methods to estimate and remove background and detector effects to maximize the accuracy and detail of the analysis of the measurement. The results will help researchers better test theories of elementary particle physics as well as help experimentalists studying other particle physics processes.

Massive Caribbean sea urchin die-off caused by parasite

In a study led by Cornell microbiology professor Ian Hewson, scientists have discovered that a parasite is behind a severe die-off of long-spined sea urchins across the Caribbean Sea, which has had devastating consequences for coral reefs and surrounding marine ecosystems.
Video Credit: Noël Heaney/Cornell University 

Scientists have discovered that a parasite is behind a severe die-off of long-spined sea urchins across the Caribbean Sea, which has had devastating consequences for coral reefs and surrounding marine ecosystems.

The long-spined sea urchins (Diadema antillarum) serve as vital herbivores that graze on algae, which if left unchecked will outcompete corals for resources and space and blanket them, block light and kill them. By feeding on algae, the sea urchins are essential to maintaining coral health and balance in the marine ecosystem.

Diadema mortalities were first reported in St. Thomas in the U.S. Virgin Islands in late January 2022. By late March, the condition was found across the Lesser Antilles, Jamaica and the Mexican Caribbean. And by June of last year, it had been detected in most of the Greater Antilles, Florida and Curacao.

Prior to an experiment designed to verify the source of infections, a healthy sea urchin was swabbed to ensure it had never been exposed to the ciliate parasite.

Scientists have been trying to identify the cause of the mysterious illness, which has led to declines of between 85% and 95% compared to pre-mortality numbers in affected areas. When sea urchins die, they lose their spines and detach from their anchors.

I’ll Have My Nano-Sized Donuts with Extra Swirls

Donut shaped skyrmions (left) show polarization swirls in one direction, while half-donut-shaped merons (right) are able to swirl in multiple directions.
Image Credit: Yu-Tsun Shao.

Swirling donuts. That’s what Yu-Tsun Shao thinks about when describing his atomic-scale materials research.

Shao, an assistant professor in the Mork Family Department of Chemical Engineering and Materials Science, aims to understand the atomic-scale behavior of donut-shaped particles that can enable low-power electronics. He has uncovered how strain and heat can shift the shape of the donut particle to give it powerful new energy-efficient and stabilizing properties. His latest work was recently published in Nature Communications.

Shao is working with skyrmions — nanometer-sized objects that resemble donut-like swirling vortexes. The skyrmions have electric polarization in the form of positive or negative charges (dipoles) that move in a continuous direction up and out from the center ‘donut hole” and down and in from the outer edge of the particle.

Not so sweet after all: are candy-striped spiders a threat to ecosystems across North America?

candy-striped spider Enoplognatha ovata
Photo Credit: Syrio (CC BY-SA 4.0)

For years, pollinator declines have been a pressing issue for ecosystem health and food security in the face of climate change and human impacts on the environment. Even in their sleep, pollinating insects cannot catch a break – for fear they’ll be taken down by a small, but mighty predator: the candy-striped spider. Research published in Ecology took a closer look into this spider’s behavior and found that the result of their stealth attacks could have substantial impacts on ecosystems.

Most likely accidentally introduced to both the East and West Coasts a little over a century ago, the candy-striped spider is a very common spider in North America. The spider's striking color varieties have attracted much research into their genetics, but before now very little was known about their behavior.

New blue light technique could enable advances in understanding nanoscale technologies

Photo Credit: Courtesy of Brown University

With a new microscopy technique that uses blue light to measure electrons in semiconductors and other nanoscale materials, a team of Brown University researchers is opening a new realm of possibilities in the study of these critical components, which can help power devices like mobile phones and laptops.

The findings are a first in nanoscale imaging and provide a workaround to a longstanding problem that has greatly limited the study of key phenomena in a wide variety of materials that could one day lead to more energy-efficient semiconductors and electronics. The work was published in Light: Science & Applications.

“There is a lot of interest these days in studying materials with nanoscale resolution using optics,” said Daniel Mittleman, a professor in Brown’s School of Engineering and author of the paper describing the work. “As the wavelength gets shorter, this becomes a lot harder to implement. As a result, nobody had ever done it with blue light until now.”

Cannabis exposures in suspected suicide attempts are on the rise

Photo Credit: Jose Luis Sanchez Pereyra

Suspected suicidal cannabis exposures have increased 17% annually, over a period of 12 years, according to a Washington State University-led analysis of U.S. poison center data.

The vast majority of the attempts, more than 92%, involved other substances in addition to cannabis, and the data cannot show a direct causal link between cannabis and suicide attempts. Still, the findings are cause for concern, the researchers said, especially since the increase was more pronounced among children and women during and after the pandemic. They reported their findings in the journal JAMA Network Open.

“This study adds to already ample evidence that cannabis use, particularly by younger people, has significant implications for mental health,” said study co-author Tracy Klein, a WSU associate professor of nursing. “We don’t have evidence that cannabis alone was the primary driver of a suicide attempt, but we do know that cannabis can worsen certain mental health conditions and increase impulsivity.”

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles