. Scientific Frontline

Thursday, April 20, 2023

A message to meteorite hunters: Put down your magnets!

Black Beauty, or NWA 7034, is thought to have formed at a time when the Red Planet harbored a magnetic field, much like the Earth does today. If the rock bears any trace of Mars’ ancient field, this could give scientists valuable clues to the planet’s past climate and composition.
Photo Credit: C Agee, Institute of Meteoritics, UNM; NASA

Each year, thousands of space rocks pierce through the Earth’s atmosphere and hit the ground as meteorites. These fragments of comets and asteroids can land anywhere but are most often spotted in open terrain, such as the deserts of Africa and the Antarctic blue ice, where a meteorite’s blackened exterior can stand out.

Still, these extraterrestrial remnants can resemble Earth rocks, and to tell the difference meteorite hunters often expose their “finds” to hand magnets, which can attract more strongly to metal-rich meteorites than to terrestrial rocks. Meteorite hunters, dealers, collectors, and curators often rely on hand magnets to verify a meteorite’s identity.

But a new MIT study finds that the same magnets used to identify a meteorite usually erase its magnetic memory. They show that exposure to a magnet can reorient a rock’s microscopic grains, undoing their original orientation and any trace of its magnetic origins.

The researchers make their case with Northwest Africa (NWA) 7034, a meteorite known in collectors’ circles as “Black Beauty” for its obsidian exterior. Multiple shards of the meteorite were first discovered in the deserts of northwest Africa, and scientists determined that the rock contained crystals that formed on Mars more than 4.4 billion years ago.

Discovery identifies those likely to experience life-threatening dengue fever

(L-R) Co-first author and PhD student Stephanie Studniberg with senior researcher, Monash BDI’s Professor Diana Hansen.
Photo Credit: WEHI

Scientists have discovered cell populations in blood which clearly indicate whether a person infected with dengue fever is likely to progress to life-threatening severe disease or not.

About half of the world’s population is at risk of dengue fever, with almost 400 million annual cases. More will be at risk as global warming enables the spread of mosquito strains that carry the virus.

Until now, there has been no accurate way to predict which patients will progress to severe dengue fever. The new finding uses immune cells to grade potential severity, paving the way for improved patient management, health system savings, and the development of a biomarker test.

Published in the Journal of Biomedical Science, the international research team, led by Professor Diana Hansen at the Monash Biomedicine Discovery Institute, included WEHI in Melbourne, and Dr Tedjo Sasmono at the Eijkman Centre in Jakarta, Indonesia.

Nagoya University researchers develop a new ultra-high-density sulfonic acid polymer electrolyte membrane for fuel cells

Researchers develop a new ultra-high-density sulfonic acid polymer electrolyte membrane  for fuel cells, which can be used for vehicles and combined heat and power systems. 
Illustration Credit: Atsushi Noro

In a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO), researchers at Nagoya University in Japan have developed poly (styrenesulfonic acid)-based PEMs with a high density of sulfonic acid groups.

One of the key components of environmentally friendly polymer electrolyte fuel cells is a polymer electrolyte membrane (PEM). It generates electrical energy through a reaction between hydrogen and oxygen gases. Examples of practical fuel cells include fuel cell vehicles (FCVs) and fuel cell combined heat and power (CHP) systems.

The best-known PEM is a membrane based on a perfluorosulfonic acid polymer, such as Nafion, which was developed by DuPont in the 1960s. It has a good proton conductivity of 0.1 S/cm at 70-90 °C under humidified conditions. Under these conditions, protons can be released from sulfonic acid groups. Proton conduction in such membranes typically depends on the proton transport mechanism between protons, sulfonic acid groups, and water molecules. Typically, the higher the density of the sulfonic acid groups in the membrane, the higher the density of protons that can be released from the sulfonic acid groups; therefore, the higher density of the sulfonic acid groups usually results in higher proton conductivities.

Towards More Efficient and Eco-Friendly Thermoelectric Oxides with Hydrogen Substitution


Hydrogen substitution is an innovative strategy for boosting the performance of thermoelectric oxide SrTiO3, find researchers at Tokyo Tech. Their latest study reveals that the approach lowers the thermal conductivity and also realizes high electronic conductivity, paving the way for a more efficient thermoelectric energy conversion of waste heat without using costly or environmentally hazardous elements.

Today, over half of the total energy produced from fossil fuels is discarded as waste heat, which accelerates global warming. If we could convert the waste heat into a more useful form of energy like electricity, we could minimize fuel consumption and reduce our carbon footprint. In this regard, thermoelectric energy conversion has gained momentum as a technology for generating electricity from waste heat.

For efficient conversion, a thermoelectric material must have a high conversion efficiency (ZT). So far, realizing a high ZT has been possible only with the use of heavy elements like lead, bismuth, and tellurium. However, the use of rare, expensive, and environmentally toxic elements such as these has limited the large-scale application of thermoelectric energy conversion.

How bee-friendly is the forest?

A honeybee (Apis mellifera) collects honeydew on a fir tree. The study shows that the beech-dominated Steigerwald provides insufficient food resources for honeybees.
Photo Credit: Ingo Arndt

What role do forests play as a feeding habitat for honeybees? A team led by Würzburg biologist Dr. Benjamin Rutschmann investigated this question. For this purpose, the researchers used observation hives inside the Steigerwald.

Bees are generally associated with flowering meadows rather than with dense forests. Woodland, however, is considered the original habitat of the western honeybee (Apis mellifera), as it offers nesting sites in the form of tree cavities. Researchers at the Julius-Maximilians-Universität Würzburg (JMU) have now investigated the extent to which contemporary deciduous forests are suitable as foraging habitats for the busy insects.

For this purpose, Benjamin Rutschmann and Patrick Kohl installed twelve normally-sized honeybee colonies in observation hives across the Steigerwald – the respective proportion of forest in the surroundings varied for each bee colony. The two scientists conduct research at JMU in the Chair of Animal Ecology and Tropical Biology (Zoology III), which is headed by Professor Ingolf Steffan-Dewenter. The latter was also involved in the study, which has now appeared in the Journal of Applied Ecology.

Chicken breeding in Japan dates back to fourth century BCE

Red junglefowl, the species from which the chicken was domesticated
Photo Credit: Masaki Eda

Conclusive evidence of chicken breeding in the Yayoi period of Japan has been discovered from the Karako-Kagi site.

The chicken is one of the most common domesticated animals, with a current estimated population of over 33 billion individuals. They are reared for their meat and eggs, and may be kept as pets.

The chicken is believed to have been domesticated in Southeast Asia about 3500 years ago, following which they were carried to all corners of the world. The exact date of introduction of chicken breeding to Japan is under debate, as there are no historical records and archeological evidence is inconclusive.

Professor Masaki Eda at the Hokkaido University Museum led a team to uncover the earliest conclusive evidence of chicken breeding in Japan. The findings, which show chickens were bred in the Karako-Kagi site, a settlement from the Yayoi period [5th century BCE to around 2nd century BCE], were published in the journal Frontiers in Earth Sciences.

Dark order in the universe

3D position and shape information for each galaxy helped to measure the magnitude of alignment relative to distant galaxies
Illustration Credit: KyotoU/Jake Tobiyama

Einstein would nod in approval. General relativity may apply even in the farthest reaches of the universe.

Now, scientists from international research institutions, including Kyoto University, have confirmed that the intrinsic alignments of galaxies have characteristics that allow it to be a powerful probe of dark matter and dark energy on a cosmological scale.

By gathering evidence that the distribution of galaxies more than tens of millions of light years away is subject to the gravitational effects of dark matter, the team succeeded in testing general theory of gravity at vast spatial scales. The international team analyzed the positions and orientations of galaxies, acquired from archived data of 1.2 million galaxy observations. With the help of available 3D positional information of each galaxy, the resulting statistical analysis quantitatively characterized the extent to which the orientation of distant galaxies is aligned.

Wednesday, April 19, 2023

Groundbreaking Parkinson’s Research

Roxana Burciu’s Motor Neuroscience and Neuroimaging Lab is using custom-made MRI equipment that allows her to study the brain activity in people with lower limb symptoms of Parkinson’s disease.
Photo Credit: Ashley Barnas

Parkinson’s disease is a common neurodegenerative disorder that affects the way people move. Often beginning with small tremors in the hand, the disease progresses to affect a person’s gait and balance.

But the majority of what’s known about the brain changes underlying these symptoms stems from magnetic resonance imaging (MRI) studies focusing on the upper extremity.

“Gait and balance disturbance are common in Parkinson's disease and are a major contributor to increased disability and decreased quality of life,” said Roxana Burciu, an assistant professor of kinesiology and applied physiology in the University of Delaware College of Health Sciences. “To design efficient interventions that improve gait and balance, we need to gain a better understanding of how the brain controls the lower extremities.”

Because quality MRI scans depend on stillness of the patient, studying the brain changes in people with Parkinson’s disease who exhibit lower limb symptoms proves challenging. 

Particle trio exceeds expectations at LHC

Illustration Credit: ATLAS Experiment/CERN

The ATLAS experiment measured more than expected of a trio of particles in the aftermath of proton collisions. The results will refine physicists’ understanding of our universe at the subatomic level.

The ATLAS experiment has confirmed that a trio of particles – a top-antitop quark pair and a W boson –occurs more frequently than expected in the wake of proton-proton collisions inside the Large Hadron Collider (LHC). 

The process that creates these three particles post impact is quite rare: Only one out of every 50,000 collisions at the LHC produces the trio, known as ttW. After popping into existence, top quarks and W bosons are short lived and decay almost immediately, so the team identified ttW events based on the electrons and muons they decay into. 

Members of the ATLAS group at the Department of Energy's SLAC National Accelerator Laboratory have spent the last three years completing a complex analysis to measure the process, including developing novel methods to estimate and remove background and detector effects to maximize the accuracy and detail of the analysis of the measurement. The results will help researchers better test theories of elementary particle physics as well as help experimentalists studying other particle physics processes.

Massive Caribbean sea urchin die-off caused by parasite

In a study led by Cornell microbiology professor Ian Hewson, scientists have discovered that a parasite is behind a severe die-off of long-spined sea urchins across the Caribbean Sea, which has had devastating consequences for coral reefs and surrounding marine ecosystems.
Video Credit: Noël Heaney/Cornell University 

Scientists have discovered that a parasite is behind a severe die-off of long-spined sea urchins across the Caribbean Sea, which has had devastating consequences for coral reefs and surrounding marine ecosystems.

The long-spined sea urchins (Diadema antillarum) serve as vital herbivores that graze on algae, which if left unchecked will outcompete corals for resources and space and blanket them, block light and kill them. By feeding on algae, the sea urchins are essential to maintaining coral health and balance in the marine ecosystem.

Diadema mortalities were first reported in St. Thomas in the U.S. Virgin Islands in late January 2022. By late March, the condition was found across the Lesser Antilles, Jamaica and the Mexican Caribbean. And by June of last year, it had been detected in most of the Greater Antilles, Florida and Curacao.

Prior to an experiment designed to verify the source of infections, a healthy sea urchin was swabbed to ensure it had never been exposed to the ciliate parasite.

Scientists have been trying to identify the cause of the mysterious illness, which has led to declines of between 85% and 95% compared to pre-mortality numbers in affected areas. When sea urchins die, they lose their spines and detach from their anchors.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles