![]() |
Omid Veiseh and Boram Kim. Kim is holding a medical-grade catheter similar to ones used in the study experiments. Photo Credit: Gustavo Raskosky/Rice University |
For the over 8 million people around the globe living with Type 1 diabetes, getting a host immune system to tolerate the presence of implanted insulin-secreting cells could be life-changing.
Rice University bioengineer Omid Veiseh and collaborators identified new biomaterial formulations that could help turn the page on Type 1 diabetes treatment, opening the door to a more sustainable, long-term, self-regulating way to handle the disease.
To do so, they developed a new screening technique that involves tagging each biomaterial formulation in a library of hundreds with a unique “barcode” before implanting them in live subjects.
According to the study in Nature Biomedical Engineering, using one of the alginate formulations to encapsulate human insulin-secreting islet cells provided long-term blood sugar level control in diabetic mice. Catheters coated with two other high-performing materials did not clog up.
“This work was motivated by a major unmet need,” said Veiseh, a Rice assistant professor of bioengineering and Cancer Prevention and Research Institute of Texas scholar. “In Type 1 diabetes patients, the body’s immune system attacks the insulin-producing cells of the pancreas. As those cells are killed off, the patient loses the ability to regulate their blood glucose.”