. Scientific Frontline

Thursday, May 11, 2023

Australian fruit holds the key to citrus disease resistance

Upuli Nakandala and Prof Robert Henry with a native Finger lime.
Photo Credit: Megan Pope

A comprehensive map of the genome of a native lime species that is resistant to a devastating citrus disease could be the key to preventing that disease entering Australia.

Researchers from The University of Queensland have sequenced the genome of the Australian round lime, also known as the Gympie lime, and are now looking at five other native citrus species including the finger lime.

PhD candidate Upuli Nakandala said the work aimed to identify a gene which provides resistance to Huanglongbing (HLB), also known as 'citrus greening', that could be incorporated into commercial citrus varieties.

“The species citrus australis is recognized as HLB-resistant so we put it first on our list,” Ms. Nakandala said.

With new experimental method, researchers probe spin structure in 2D materials for first time

In the study, researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.
 Graphic Credit: Jia Li, an assistant professor of physics at Brown.

For two decades, physicists have tried to directly manipulate the spin of electrons in 2D materials like graphene. Doing so could spark key advances in the burgeoning world of 2D electronics, a field where super-fast, small and flexible electronic devices carry out computations based on quantum mechanics.

Standing in the way is that the typical way in which scientists measure the spin of electrons — an essential behavior that gives everything in the physical universe its structure — usually doesn’t work in 2D materials. This makes it incredibly difficult to fully understand the materials and propel forward technological advances based on them. But a team of scientists led by Brown University researchers believe they now have a way around this longstanding challenge. They describe their solution in a new study published in Nature Physics.

In the study, the team — which also include scientists from the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the University of Innsbruck — describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation. Called a coupling, the absorption of microwave photons by electrons establishes a novel experimental technique for directly studying the properties of how electrons spin in these 2D quantum materials — one that could serve as a foundation for developing computational and communicational technologies based on those materials, according to the researchers.

First-of-its-kind measurement of Universe’s expansion rate weighs in on longstanding astronomy debate

Image Credit: Patrick Kelly, University of Minnesota

Thanks to data from a magnified supernova, a team led by University of Minnesota researchers has successfully used a first-of-its-kind technique to measure the expansion rate of the Universe. Their data provide insight into a longstanding debate in the field of astronomy and could help scientists more accurately determine the Universe’s age and better understand the cosmos.

The work is divided into two papers, published in Science, one of the world’s top peer-reviewed academic journals, and The Astrophysical Journal, a peer-reviewed scientific journal of astrophysics and astronomy.

In astronomy, there are two precise measurements of the expansion of the Universe, also called the “Hubble constant.” One is calculated from nearby observations of supernovae, and the second uses the “cosmic microwave background,” or radiation that began to stream freely through the Universe shortly after the Big Bang. 

However, these two measurements differ by about 10%, which has caused widespread debate among physicists and astronomers. If both measurements are accurate, that means scientists’ current theory about the make-up of the universe is incomplete.

12 Months of Treatment with EPIT Superior to Placebo in Desensitizing Children to Peanuts

Wesley Burks, MD, and Edwin Kim, MD
Photo Credit: Courtesy UNC School of Medicine

The study, called EPITOPE, led by senior author A. Wesley Burks, MD, CEO of UNC Health and dean of the UNC School of Medicine, and contributing author Edwin Kim, MD, MS, associate professor of pediatrics in the Division of Pediatric Allergy and Immunology at the UNC School of Medicine, shows superior results in desensitizing children to peanuts. Results were recently published in the New England Journal of Medicine.

Peanut allergy affects approximately two percent of children in the United States, Canada, and other westernized countries, with a rapidly rising prevalence over the past 20 years. Currently there are no FDA approved treatment options for peanut-allergic children under the age of 4 years, but further research into the safety, efficacy, and tolerability of epicutaneous immunotherapy (EPIT) could play a significant role in novel options for immunotherapy. The EPITOPE trial, led by senior author A. Wesley Burks, MD, CEO of UNC Health and dean of the UNC School of Medicine, evaluating the safety profile of Viaskin, a novel form of EPIT, among peanut-allergic toddlers shows that after 12 months of treatment in children aged 1-3 years, the treatment was found to be statistically superior to placebo in desensitizing participants to peanuts, increasing the peanut dose triggering allergic symptoms. Edwin Kim, MD, MS, associate professor of pediatrics in the Division of Pediatric Allergy and Immunology at the UNC School of Medicine is also a contributing author to the paper.

Study could help solve mystery of the disappearing twins

An image of the binary stars Alpha Centauri A (left) and Alpha Centauri B, taken by the Hubble Space Telescope.
Image Credit: NASA

When supermassive stars are born, they’re almost always paired with a twin, and the two stars normally orbit one another.

But astronomers at UCLA’s Galactic Center Group and the Keck Observatory have analyzed over a decade’s worth of data about 16 young supermassive stars orbiting the supermassive black hole at the center of the Milky Way galaxy. Their findings, published today in the Astrophysical Journal, reveal a startling conclusion: All of them are singletons.

But why? Are the stars, which are about 10 times larger than our sun, being formed alone in the hostile environment around the black hole? Have their “twins” been kicked out by the black hole? Or have pairs of stars merged to form single stars?

The findings support a scenario in which the central supermassive black hole drives nearby stellar binaries to merge or be disrupted, with one of the pair being ejected from the system.

Like ancient mariners, ancestors of Prochlorococcus microbes rode out to sea on exoskeleton particles

New research suggests the Prochlorococcus microbe’s ancient coastal ancestors colonized the ocean by rafting out on chitin particles.
Illustration Credit: Jose-Luis Olivares/MIT
(CC BY-NC-ND 3.0)

Throughout the ocean, billions upon billions of plant-like microbes make up an invisible floating forest. As they drift, the tiny organisms use sunlight to suck up carbon dioxide from the atmosphere. Collectively, these photosynthesizing plankton, or phytoplankton, absorb almost as much CO2 as the world’s terrestrial forests. A measurable fraction of their carbon-capturing muscle comes from Prochlorococcus — an emerald-tinged free-floater that is the most abundant phytoplankton in the oceans today.

But Prochlorococcus didn’t always inhabit open waters. Ancestors of the microbe likely stuck closer to the coasts, where nutrients were plentiful and organisms survived in communal microbial mats on the seafloor. How then did descendants of these coastal dwellers end up as the photosynthesizing powerhouses of the open oceans today?

MIT scientists believe that rafting was the key. In a new study they propose that ancestors of Prochlorococcus acquired an ability to latch onto chitin — the degraded particles of ancient exoskeletons. The microbes hitched a ride on passing flakes, using the particles as rafts to venture further out to sea. These chitin rafts may have also provided essential nutrients, fueling and sustaining the microbes along their journey.

A multiomics approach provides insights into flu severity

Photo Credit: Andrea Piacquadio

Have you ever wondered why some people might get sicker than others, even when they catch the same virus? It is not yet clear why this is. Viral factors (such as differences in the strain of a virus) play a role in this variability, but they cannot account for the wide range of responses in different individuals infected by the same virus. A number of host factors have also been considered, including pre-existing immunity, age, sex, weight, and the microbiome.

Another important factor is the molecular biology within your cells. DNA is shown as one long double-helical strand. So, you might expect that the cell would always read genetic information in order, starting at one end and going to the other. But this isn’t the case. DNA contains transposable elements, sometimes called “junk DNA,” which can change the regions of the genome that are being read at a given time.

The work published in Cell Genomics by an international team led by Dr. Guillaume Bourque, who studied the role of these transposable elements on the severity of illness after influenza A virus infection.

Singing humpback whales respond to wind noise, but not boats

UQ researchers recorded humpback whales off the Queensland coast for the study.
Photo Credit: Mike Doherty

A University of Queensland study has found humpback whales sing louder when the wind is noisy, but don’t have the same reaction to boat engines.

Research lead Dr Elisa Girola from UQ’s Faculty of Science said this quirk of whale evolution could have consequences for breeding and behavior.

“Humpback whales evolved over millions of years with noise from natural sources but noise from man-made vessels is foreign to their instincts,” Dr Girola said.

“It’s a surprising finding given engine noise has a similar frequency range to the wind.

“It’s possible the whales are picking out other differences such as wind noise being broadband and the same over large areas, while vessel noise is generated by a single-point source with specific peaks in frequency.

“We don’t know yet if this lack of response to boat noise is making whales communicate less effectively or making breeding practices more difficult.

Testing a theory of supermassive black holes with 100 newly described 'blazars'

For some supermassive black holes, matter outside the event horizon is propelled at high speed in a jet that can be detected across the universe. When the jet is pointed in the direction of the Earth, it is typically called a blazar. Penn State researchers have characterized more than a hundred relatively dim blazars and used them to test a contentious theory of blazar emissions.
Illustration Credit: NASA/JPL-Caltech/GSFC

More than a hundred blazars — distant and active galaxies with a central supermassive black hole that drives powerful jets — have been newly characterized by Penn State researchers from a catalog of previously unclassified high-energy cosmic emissions. The new blazars, which are dim relative to more typical blazars, have allowed the researchers to test a controversial theory of blazar emissions, informing our understanding of black hole growth and even theories of general relativity and high-energy particle physics.

A paper describing the blazars and the theory has been accepted for publication in the Astrophysical Journal, and the peer-reviewed accepted version appears online on the preprint server arXiv.

Supermassive black holes can be millions or billions of times the mass of our sun. In some cases, matter outside of the black hole’s event horizon is propelled in a jet, accelerating to nearly the speed of light and sending emissions across the universe. When the jet happens to be pointed directly at the Earth, the system is typically called a blazar.

NUS scientists develop a novel light-field sensor for 3D scene construction with unprecedented angular resolution

Prof Liu Xiaogang (right) and Dr Yi Luying from the NUS Department of Chemistry capturing a 3D image of a model using the light-field sensor.
Photo Credit: Courtesy of National University of Singapore

Color-encoding technique for light-field imaging has potential applications in fields such as autonomous driving, virtual reality and biological imaging

A research team from the National University of Singapore (NUS) Faculty of Science, led by Professor Liu Xiaogang from the Department of Chemistry, has developed a 3D imaging sensor that has an extremely high angular resolution, which is the capacity of an optical instrument to distinguish points of an object separated by a small angular distance, of 0.0018o. This innovative sensor operates on a unique angle-to-color conversion principle, allowing it to detect 3D light fields across the X-ray to visible light spectrum.  

A light field encompasses the combined intensity and direction of light rays, which the human eyes can process to precisely detect the spatial relationship between objects. Traditional light sensing technologies, however, are less effective. Most cameras, for instance, can only produce two-dimensional images, which is adequate for regular photography but insufficient for more advanced applications, including virtual reality, self-driving cars, and biological imaging. These applications require precise 3D scene construction of a particular space.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles