![]() |
The findings in mice have the potential to advance treatment of some brain injuries and illnesses Photo Credit: Kanashi |
In a novel set of experiments with mice trained to do a sequence of movements and "change course" at the spur of the moment, Johns Hopkins scientists report they have identified areas of the animals' brains that interact to control the ability to perform complex, sequential movements, as well as to help the mice rebound when their movements are interrupted without warning.
The research, they say, could one day help scientists find ways to target those regions in people and restore motor function caused by injury or illness.
Based on brain activity measurements of the specially trained rodents, the investigators found that three main areas of the cortex have distinct roles in how the mice navigate through a sequence of movements: the premotor, primary motor, and primary somatosensory areas. All are on the top layers of the mammals' brains and arranged in a fundamentally similar fashion in people.
The team concluded that the primary motor and primary somatosensory areas are involved in controlling the immediate movements of the mice in real time, while the premotor area appears to control an entire planned sequence of movements, as well as how the mice react and adjust when the sequence is unexpectedly disrupted.