. Scientific Frontline

Wednesday, May 17, 2023

Genetic research offers new perspective on the early evolution of animals

Some representatives of comb jellies - (a) Beroe ovata, (b) Euplokamis sp., (c) Nepheloctena sp., (d) Bathocyroe fosteri, (e) Mnemiopsis leidyi, and (f) Ocyropsis sp.
Image Credits: a, b, e, f: Joseph F. Ryan; c: R. Griswold, National Oceanic and Atmospheric Administration; d: Marsh Youngbluth, National Oceanic and Atmospheric Administration.

Mapping gene linkages provides clear-cut evidence for comb jellies as sibling group to all other animals

A study published by University of Vienna and MBARI researchers and their collaborators today in Nature provides new insights into one of the earliest points in animal evolution that happened more than 700 million years ago.

For more than a century, scientists have been working to understand the pivotal moment when an ancient organism gave rise to the diverse array of animals in the world today. As technology and science have advanced, scientists have investigated two alternative hypotheses for which animals—sponges or comb jellies, also known as ctenophores—were most distantly related to all other animals. Identifying this outlier—known as the sibling group—has long eluded scientists.

In the new study, a team of researchers from MBARI, the University of Vienna, the University of California, Berkeley, and the University of California, Santa Cruz, mapped sets of genes that are always found together on a single chromosome, in everything from humans and hamsters to crabs and corals, to provide clear evidence that comb jellies are the sibling group to all other animals. Understanding the relationships among animals will help shape our thinking about how key features of animal anatomy, such as the nervous system or digestive tract, have evolved over time.

Radio signal reveals supernova origin

Artist impression of the double star system with a compact white dwarf star accreting matter from a helium-rich donor companion, surrounded by dense and dusty circumstellar material. It was the interaction of the exploded star and the material left over from this companion that gave rise to the strong radio signal, the conspicuous helium lines in the optical spectra and the infrared emission from SN 2020eyj.
Video Credit: Adam Makarenko/W. M. Keck Observatory

In the latest issue of the journal Nature, an international team including astronomers from University of Turku reveal the origin of a thermonuclear supernova explosion. Strong emission lines of helium and the first detection of such a supernova in radio waves show that the exploding white dwarf star had a helium-rich companion.

Thermonuclear (Type Ia) supernovae are important for astronomers since they are used to measure the expansion of the Universe. However, the origin of these explosions remains an open question. While it is established that the explosion is that of a compact white dwarf star somehow accreting too much matter from a companion star, the exact process and the nature of the progenitor is not known. The new discovery of supernova SN 2020eyj established that the companion star was a so-called helium star that had lost much of its material just prior to the explosion of the white dwarf.

“Once we saw the signatures of strong interaction with the material from the companion, we tried to detect it also in radio emission”, explains Erik Kool, post-doc at the Department of Astronomy at Stockholm University and lead author of the paper. “The detection in radio is actually the first one of a Type Ia supernova – something astronomers have tried to do for decades.”

Scales or feathers? It all comes down to a few genes

From left to right: Rory Cooper, a post-doctoral researcher in Michel Milinkovitch’s laboratory, and Michel Milinkovitch, professor in the Department of Genetics and Evolution at the Faculty of Science of the UNIGE. 
Photo Credit: UNIGE

Scales, spines, feathers and hair are examples of vertebrate skin appendages, which constitute a remarkably diverse group of micro-organs. Despite their natural multitude of forms, these appendages share early developmental processes at the embryonic stage. Two researchers from the University of Geneva (UNIGE) have discovered how to permanently transform the scales that normally cover the feet of chickens into feathers, by specifically modifying the expression of certain genes. These results, published in the journal Science Advances, open new perspectives for studying mechanisms that have enabled radical evolutionary transitions in form among species.

The skin of terrestrial vertebrates is adorned with diverse keratinized appendages, such as hair, feathers, and scales. Despite the diversity of forms within and among species, the embryonic development of skin appendages typically begins in a very similar way. Indeed, all of these structures develop from cells that produce a localized thickening on the skin surface and express particular genes. One of these genes, called Sonic hedgehog (Shh), controls a signaling pathway - a communication system that allows the transmission of messages within and between cells. Shh signaling is involved in the development of diverse structures, including the neural tube, limb buds and skin appendages.

New Model for Human Evolution Suggests Homo Sapiens Arose from Multiple Closely Related Populations

View of the village of Kuboes, on the border of South Africa and Namibia. DNA samples were collected from Nama individuals who have historically lived in the region.
Photo Credit: Brenna Henn/UC Davis

In testing the genetic material of current populations in Africa and comparing against existing fossil evidence of early Homo sapiens populations there, researchers have uncovered a new model of human evolution — overturning previous beliefs that a single African population gave rise to all humans. The new research was published today, May 17, in the journal Nature.

Although it is widely understood that Homo sapiens originated in Africa, uncertainty surrounds how branches of human evolution diverged and how people migrated across the continent, said Brenna Henn, professor of anthropology and the Genome Center at UC Davis, corresponding author of the research.

“This uncertainty is due to limited fossil and ancient genomic data, and to the fact that the fossil record does not always align with expectations from models built using modern DNA,” she said. “This new research changes the origin of species.”

Research co-led by Henn and Simon Gravel of McGill University tested a range of competing models of evolution and migration across Africa proposed in the paleoanthropological and genetics literature, incorporating population genome data from southern, eastern and western Africa.

Are Earth and Venus the only volcanic planets? Not anymore.

LP 791-18 d is an Earth-size world about 90 light-years away. The gravitational tug from a more massive planet in the system, shown as a blue disk in the background, may result in internal heating and volcanic eruptions – as much as Jupiter’s moon Io, the most geologically active body in the solar system.
Illustration Credit: NASA’s Goddard Space Flight Center/Chris Smith/KRBwyle

Imagine an Earth-sized planet that’s not at all Earth-like. Half this world is locked in permanent daytime, the other half in permanent night, and it’s carpeted with active volcanoes. Astronomers have discovered that planet. 

The planet, named LP 791-18d, orbits a small red dwarf star about 90 light years away. Volcanic activity makes the discovery particularly notable for astronomers because volcanism facilitates interaction between a world’s interior and its exterior.

“Why is volcanism important? It is the major source contributing to a planetary atmosphere, and with an atmosphere you could have surface liquid water — a requirement for sustaining life as we know it,” said UC Riverside astrophysicist Stephen Kane. 

Astronomers already knew about two other worlds in this star system, LP 791-18b and c. The outer planet, c, is about 2.5 times Earth’s size, and nearly nine times its mass. 

Researchers develop new method to synthesize cannabis plant compound

Photo Credit: Matthew Brodeur

A group of researchers at Leipzig University has developed a new method for synthesizing cis-tetrahydrocannabinol (THC) – a natural substance found in the cannabis plant that produces the characteristic psychoactive effect and has many potential applications, including in the pharmaceutical industry. “Our strategy makes it possible to produce cis-tetrahydrocannabinoids and test them for their biological activity,” explains researcher Caroline Dorsch, who, together with Professor Christoph Schneider from the Institute of Organic Chemistry, has published her findings in the journal Angewandte Chemie.

She points out that until now there has been no way of synthesizing this structural class in a consistent way. With their simple, inexpensive and nature-based synthesis, the Leipzig researchers have for the first time made the substance class of cis-tetrahydrocannabinoids accessible for a broad range of applications. The researcher notes that because previous methods required many steps and large amounts of chemicals and solvents, their approach is clearly superior. The substance can be synthesized with high overall yields and excellent optical purities using the new method.  

Study Finds Carrying Pollen Heats Up Bumble Bees, Raising New Climate Change Questions

Photo Credit: Malia Naumchik.

A new study from North Carolina State University finds carrying pollen is a workout that significantly increases the body temperature of bumble bees. This new understanding of active bumble bee body temperatures raises questions about how these species will be impacted by a warmer world due to climate change.

Spend a bit of time at a nearby flower patch and you will spot a fuzzy bumble bee with yellow bumps on her back legs. These yellow bumps are solid packets of pollen that have been carefully collected during the bees’ foraging trip for transport back to their nests. And while bees may seem to move from flower to flower with ease, these pollen packets can weigh up to a third of their body weight. This new study found that – after accounting for environmental temperature and body size – the body temperature of bumble bees carrying pollen was significantly hotter than the temperature of bees that were empty-legged.

Specifically, the researchers found that bee body temperatures rose 0.07°C for every milligram of pollen that they carried, with fully laden bees being 2°C warmer than unladen bees.

Evidence of ‘pandemic brain’ in college students

“This study provides additional information to understand why students may have been having difficulty coming to class, focusing on class and getting things turned in – because there was this global event affecting every part of their lives,” lead researcher Melissa Buelow says.
Photo Credit: RF._.studio

Decision-making capabilities of college students – including some graduating this spring – were likely negatively affected by the COVID-19 pandemic, new research suggests.

Students in the small study conducted by researchers at The Ohio State University were less consistent in their decision making during the 2020 fall semester compared to students who had participated in similar research over several previous years.

The researchers compared responses to a hypothetical situation made by students during the pandemic to responses made by students in earlier studies. They found evidence that students in 2020 were more likely to cycle between going with their gut and more thoroughly mulling over their answers depending on how the scenario was described.

“Our theory is that feeling stressed by everything going on was limiting students’ resources to really evaluate the information that was presented to them,” said lead author Melissa Buelow, professor of psychology at Ohio State’s Newark campus. 

A better way to study ocean currents

Computer scientists at MIT joined forces with oceanographers to develop a machine-learning model that incorporates knowledge from fluid dynamics to generate more accurate predictions about the velocities of ocean currents. This figure shows drifting buoy trajectories in the Gulf of Mexico superimposed on surface currents. The red dots mark the buoys’ positions on March 9, 2016, and the tails are 14 days long.
Image Credits: Edward Ryan and Tamay Özgökmen from the University of Miami.

A new machine-learning model makes more accurate predictions about ocean currents, which could help with tracking plastic pollution and oil spills, and aid in search and rescue.

To study ocean currents, scientists release GPS-tagged buoys in the ocean and record their velocities to reconstruct the currents that transport them. These buoy data are also used to identify “divergences,” which are areas where water rises up from below the surface or sinks beneath it.

By accurately predicting currents and pinpointing divergences, scientists can more precisely forecast the weather, approximate how oil will spread after a spill, or measure energy transfer in the ocean. A new model that incorporates machine learning makes more accurate predictions than conventional models do, a new study reports.

A multidisciplinary research team including computer scientists at MIT and oceanographers has found that a standard statistical model typically used on buoy data can struggle to accurately reconstruct currents or identify divergences because it makes unrealistic assumptions about the behavior of water.

The researchers developed a new model that incorporates knowledge from fluid dynamics to better reflect the physics at work in ocean currents. They show that their method, which only requires a small amount of additional computational expense, is more accurate at predicting currents and identifying divergences than the traditional model.

Mystery of important blood pressure drugs solved

Prof. Daniel Fuster, M.D. Department for BioMedical Research (DBMR) of the University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital.
Photo Credit: Courtesy of Daniel Fuster

Diuretic drugs from the thiazide group have been used for 60 years to treat high blood pressure. But they also increase the risk of developing diabetes. Researchers at the University of Bern and Inselspital have now pinpointed the cause of this side effect and in the process also gained new insights into the development of diabetes.

High blood pressure is a global health problem. In Switzerland, one in two people over the age of 65 has high blood pressure. This has been shown to increase the risk of serious secondary diseases such as dementia, stroke, cerebral hemorrhage, heart attack, and kidney failure. According to estimates by the World Health Organization, for example, around 54 percent of strokes are a direct result of high blood pressure. "Accordingly, there is a great need for effective, and also inexpensive and widely available antihypertensive drugs - particularly in light of our aging society," explains Prof. Daniel Fuster, M.D., from the Department for BioMedical Research at the University of Bern (DBMR) and Head Physician at the Department of Nephrology and Hypertension at Inselspital, Bern University Hospital.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles