![]() |
A new study led by researchers at Penn State found that a new vaccine against the deadly chytrid fungus in frogs can shift the composition of the microbiome, making frogs more resilient to future exposure to the fungus. Photo Credit: Paul Bonnar |
A human's or animal’s microbiome — the collection of often beneficial microorganisms, including bacteria and fungi, that live on or within a host organism — can play an important role in the host’s overall immune response, but it is unclear how vaccines against harmful pathogens impact the microbiome. A new study led by researchers at Penn State found that a new vaccine against the deadly chytrid fungus in frogs can shift the composition of the microbiome, making frogs more resilient to future exposure to the fungus. The study, published June 12 in a special issue of the journal Philosophical Transactions of the Royal Society B, suggests that the microbiome response could be an important, overlooked part of vaccine efficacy.
“The microorganisms that make up an animal’s microbiome can often help defend against pathogens, for example by producing beneficial metabolites or by competing against the pathogens for space or nutrients,” said Gui Becker, associate professor of biology at Penn State and leader of the research team. “But what happens to your microbiome when you get a vaccine, like a COVID vaccine, flu shot, or a live-attenuated vaccine like the yellow fever vaccine? In this study, we used frogs as a model system to start exploring this question.”
Frogs and other amphibians are threatened by the chytrid fungus, which has led to extinctions of some species and severe population declines in hundreds of others across several continents. In susceptible species, the fungus causes a sometimes-lethal skin disease.