Wednesday, June 14, 2023
A Novel Technique to Observe Colloidal Particle Degradation in Real Time
New way of identifying proteins supports drug development
All living cells contain proteins with different functions, depending on the type of cell. Researchers at the University of Gothenburg have discovered a way to identify proteins without even looking at their structure. Their method is faster, easier and more reliable than previous methods.
Currently, the general view is that each protein’s structure is what controls its function in cells. The atomic sequences, meaning how the atoms are arranged in the proteins, create the protein’s structure and shape. But there are many proteins that lack a well-defined structure.
Researcher Gergely Katona has developed a new method where proteins are scanned based on the number of amino acids (or the number of different atoms) they contain in order to identify them and their function instead of identifying them based on their structure. With this scanning method, the researchers were able to predict relatively reliably which combination of amino acids is needed to bind to the protein survivin. The outcome was a reliability of about 80 per cent, which is better than when you use the protein’s primary structures for identification. The results are now published in the scientific journal iScience.
Tuesday, June 13, 2023
AI helps show how the brain’s fluids flow
New research targets diseases including Alzheimer’s.
A new artificial intelligence-based technique for measuring fluid flow around the brain’s blood vessels could have big implications for developing treatments for diseases such as Alzheimer’s.
The perivascular spaces that surround cerebral blood vessels transport water-like fluids around the brain and help sweep away waste. Alterations in the fluid flow are linked to neurological conditions, including Alzheimer’s, small vessel disease, strokes, and traumatic brain injuries but are difficult to measure in vivo.
A multidisciplinary team of mechanical engineers, neuroscientists, and computer scientists led by University of Rochester Associate Professor Douglas Kelley developed novel AI velocimetry measurements to accurately calculate brain fluid flow. The results are outlined in a study published by Proceedings of the National Academy of Sciences.
Next Generation Experimental Aircraft Becomes NASA’s Newest X-Plane
![]() |
The X-66A is the X-plane specifically aimed at helping the United States achieve the goal of net-zero greenhouse gas emissions by 2050. To build the X-66A, Boeing will work with NASA to modify an MD-90 aircraft, shortening the fuselage and replacing its wings and engines. The resulting demonstrator aircraft will have long, thin wings with engines mounted underneath and a set of aerodynamic trusses for support. The design, which Boeing submitted for NASA’s Sustainable Flight Demonstrator project, is known as a Transonic Truss-Braced Wing. Full Size Image Image Credits: NASA |
NASA and Boeing said Monday the aircraft produced through the agency’s Sustainable Flight Demonstrator project has been designated by the U.S. Air Force as the X-66A.
The new X-plane seeks to inform a potential new generation of more sustainable single-aisle aircraft – the workhorse of passenger airlines around the world. Working with NASA, Boeing will build, test, and fly a full-scale demonstrator aircraft with extra-long, thin wings stabilized by diagonal struts, known as a Transonic Truss-Braced Wing concept.
“At NASA, our eyes are not just focused on stars but also fixated on the sky. The Sustainable Flight Demonstrator builds on NASA’s world-leading efforts in aeronautics as well climate,” said NASA Administrator Bill Nelson. “The X-66A will help shape the future of aviation, a new era where aircraft are greener, cleaner, and quieter, and create new possibilities for the flying public and American industry alike.”
The X-66A is the first X-plane specifically focused on helping the United States achieve the goal of net-zero aviation greenhouse gas emissions, which was articulated in the White House’s U.S. Aviation Climate Action Plan.
High-performing alloy developed to help harness fusion energy
![]() |
The research team demonstrated that minor additions of hafnium into the WTaCrV high entropy alloy lead to higher radiation resistance. Photo credit: Courtesy of Los Alamos National Laboratory |
A newly developed tungsten-based alloy that performs well in extreme environments similar to those in fusion reactor prototypes may help harness fusion energy.
“The new alloy shows promising resistance to irradiation resistance and stability under the high temperatures and extreme irradiation environments used to represent a fusion-reactor environment,” said Osman El Atwani, a staff scientist at Los Alamos National Laboratory. “The development of this alloy, and the agreement between modeling and experimentation that it represents, points the way toward the development of further useful alloys, an essential step in making fusion power generation more robust, cost-effective, economically predictable and attractive to investors.”
As fusion energy concepts move closer to the real world, solving the materials challenge is imperative. The encouraging results indicate that a design paradigm, as described by El Atwani and his collaborators, and high entropy alloys may be ready to play their role in harnessing the promise of fusion.
El Atwani was the principal investigator for the project, which involved several national and international institutions. Their results were published in Nature Communications.
UC Irvine neuroscientists develop ‘meta-cell’ to move Alzheimer’s fight forward
University of California, Irvine neuroscientists probing the gene changes behind Alzheimer’s disease have developed a process of making a “meta-cell” that overcomes the challenges of studying a single cell. Their technique has already revealed important new information and can be used to study other diseases throughout the body.
Details about the meta-cell – created by researchers with the UCI Institute for Memory Impairments and Neurological Disorders, known as UCI MIND – were published in the online journal Cell Press.
Technologies called transcriptomics that study sets of RNA within organisms enable scientists to understand what each cell does. However, the question of how particular genes work within a solo cell, a process known as single-cell genomics, has not been widely studied. As a result, it has still been difficult to determine which genes are associated with disease or carrying out normal functions.
“The challenge is that a single cell does not contain much RNA,” said first author Samuel Morabito, a UCI graduate student researcher in the mathematical, computational and systems biology program. “This sparsity makes it hard to study. Even if a gene is present, technology might miss it.”
Pass the salt: This space rock holds clues as to how Earth got its water
![]() |
Asteroid Itokawa as seen by the Hayabusa spacecraft. The peanut-shaped S-type asteroid measures approximately 1,100 feet in diameter and completes one rotation every 12 hours. Photo Credit: JAXA |
The discovery of tiny salt grains in an asteroid sample brought to Earth by the Japanese Hayabusa spacecraft provides strong evidence that liquid water may be more common in the solar system's largest asteroid population than previously thought.
Sodium chloride, better known as table salt, isn't exactly the type of mineral that captures the imagination of scientists. However, a smattering of tiny salt crystals discovered in a sample from an asteroid has researchers at the University of Arizona Lunar and Planetary Laboratory excited, because these crystals can only have formed in the presence of liquid water.
Even more intriguing, according to the research team, is the fact that the sample comes from an S-type asteroid, a category known to mostly lack hydrated, or water-bearing, minerals. The discovery strongly suggests that a large number of asteroids hurtling through the solar system may not be as dry as previously thought. The finding, published in Nature Astronomy, gives renewed push to the hypothesis that most, if not all, water on Earth may have arrived by way of asteroids during the planet's tumultuous infancy.
Zega and lead study author Shaofan Che, a postdoctoral fellow at the Lunar and Planetary Laboratory, performed a detailed analysis of samples collected from asteroid Itokawa in 2005 by the Japanese Hayabusa mission and brought to Earth in 2010.
Teens rarely receive addiction medication in U.S. treatment centers
New research reveals that only one in four adolescent residential treatment centers across the country provides a medication used to treat opioid use disorder, despite an ever-rising number of overdose deaths among young people nationwide resulting from a surge of illicit fentanyl.
The study, led by researchers at Oregon Health & Science University, published today in the Journal of the American Medical Association.
Researchers say the lack of buprenorphine in adolescent residential treatment centers undercuts the United States’ efforts to alleviate an overdose epidemic that claimed more than 109,000 lives in 2022, according to predicted provisional statistics from the Centers for Disease Control and Prevention, or CDC. Recognizing the particular vulnerability of young people, especially as fentanyl now contaminates other illicit substances, OHSU researchers set out to determine how many adolescent treatment centers in the U.S. were providing buprenorphine to treat addiction.
Vaccine against deadly chytrid fungus primes frog microbiome for future exposure
![]() |
A new study led by researchers at Penn State found that a new vaccine against the deadly chytrid fungus in frogs can shift the composition of the microbiome, making frogs more resilient to future exposure to the fungus. Photo Credit: Paul Bonnar |
A human's or animal’s microbiome — the collection of often beneficial microorganisms, including bacteria and fungi, that live on or within a host organism — can play an important role in the host’s overall immune response, but it is unclear how vaccines against harmful pathogens impact the microbiome. A new study led by researchers at Penn State found that a new vaccine against the deadly chytrid fungus in frogs can shift the composition of the microbiome, making frogs more resilient to future exposure to the fungus. The study, published June 12 in a special issue of the journal Philosophical Transactions of the Royal Society B, suggests that the microbiome response could be an important, overlooked part of vaccine efficacy.
“The microorganisms that make up an animal’s microbiome can often help defend against pathogens, for example by producing beneficial metabolites or by competing against the pathogens for space or nutrients,” said Gui Becker, associate professor of biology at Penn State and leader of the research team. “But what happens to your microbiome when you get a vaccine, like a COVID vaccine, flu shot, or a live-attenuated vaccine like the yellow fever vaccine? In this study, we used frogs as a model system to start exploring this question.”
Frogs and other amphibians are threatened by the chytrid fungus, which has led to extinctions of some species and severe population declines in hundreds of others across several continents. In susceptible species, the fungus causes a sometimes-lethal skin disease.
Summit study fathoms troubled waters of ocean turbulence
Simulations performed on the Summit supercomputer at the Department of Energy’s Oak Ridge National Laboratory revealed new insights into the role of turbulence in mixing fluids and could open new possibilities for projecting climate change and studying fluid dynamics.
The study, published in the Journal of Turbulence, used Summit to model the dynamics of a roughly 10-meter section of ocean. That study generated one of the most detailed simulations to date of how turbulence disperses heat through seawater under realistic conditions. The lessons learned can apply to other substances, such as pollution spreading through water or air.
“We’ve never been able to do this type of analysis before, partly because we couldn’t get samples at the necessary size,” said Miles Couchman, co-author and a postdoc at the University of Cambridge. “We needed a machine-like Summit that could allow us to observe these details across the vast range of relevant scales.”
Featured Article
Discovery of unexpected collagen structure could ‘reshape biomedical research’
Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles
-
Groups of spheres from Akrotiri Credit: Konstantinos Trimmis Archaeologists from the University of Bristol have suggested that mysterious st...
-
David Nagib The most common pharmaceuticals on the market are made by chaining together rings of molecules to create the drugs that treat co...
-
Researchers have conducted a 16-year long experiment to challenge Einstein’s theory of general relativity. The international team looked to ...
-
Two cathode inductive voltage-adder cells on the electrical test stand are aligned at Sandia National Laboratories. After thousands of tests...
-
Climate change intensifies extreme heat in the soil. Photo Credit: André Künzelmann (UFZ) For a long time, little attention was paid to soil...
-
A rendering of the sauropod known as Mamenchisaurus sinocanadorum, which had a 15-meter-long neck, about 10 feet longer than a typical scho...