![]() |
The RISE instrument on the InSight lander (artist’s concept). Image Credit: NASA/JPL-Caltech. |
New results from the radio-science instrument of the NASA InSight mission on Mars are published today in the scientific journal Nature. With the data accumulated during the first two and a half years of the mission, a team of planetary scientists mainly from the Royal Observatory of Belgium has precisely measured the rotation of Mars. They detected a signature that can only be explained by the presence of a liquid core. These variations in rotation provide important information about the deep interior of Mars.
In November 2018, the NASA InSight mission successfully touched down in the region of Elysium Planitia on the surface of Mars. As suggested by its acronym (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport), this mission was the first of its kind, dedicated to the exploration of the deep interior of Mars. InSight was equipped with a seismometer and a radio-science transponder named RISE (Rotation and Interior Structure Experiment). The mission concluded in December 2022.
The RISE experiment was specifically designed to measure the nutations of Mars. Nutations are the periodic oscillations, also called wobbles, of the spin axis in space. Sébastien Le Maistre, the lead author explains: “The RISE transponder has the ability to establish communication with gigantic (up to 70 m dish) radio-telescopes on Earth and of measuring the tiniest variations of the distance between a lander on Mars and Earth, caused by the orbital and rotational movements of the two planets. For the first time, we detected at such a large distance, hundreds of millions of km, the 40 cm oscillations due to the presence of the Martian liquid core. These oscillations are affected by a resonant behavior that only occurs when the core is liquid.”