![]() |
Nanocomponents as organic dyes or nanoparticles bind to the surface of the chips and form 3D molecular architectures. Photo Credit: Christoph Hohmann / LMU |
Imagine hundreds of Lego bricks coming together and spontaneously forming, say, a house. And then, before you know it, the whole play mat is filled with hundreds of houses. Although this does not work in real life, it can be accomplished effortlessly at the molecular level – provided the conditions are right. Nature has mastered the principle of self-organization by exploiting intermolecular forces and electrostatic attraction. In this way, complex 3D structures with a specific function are seemingly formed by magic. Light-harvesting complexes for photosynthesis or hydrophobic, self-cleaning lotus leaves are two examples. “It’s exactly this principle of self-assembly that we’re adapting for our purposes and using to develop methods for functionalizing surfaces on the nanometer scale. To do this, we combine lithographic methods with DNA origami, enabling us to construct ordered 3D nanostructures,” explains Dr. Irina Martynenko, a postdoctoral researcher in physics professor Tim Liedl’s research group at LMU. The research team has now published its results in the journal Nature Nanotechnology. “The fields of application for nano- and micro-structured substrates are extremely diverse, ranging from microchips and biosensors to solar cells. This makes the principle of self-assembly so advantageous,” observes Martynenko.