. Scientific Frontline

Thursday, October 5, 2023

Cellular Atlas of Amygdala Reveals New Treatment Target for Cocaine Addiction

The study was led by co-senior authors Francesca Telese, PhD (left) and Graham McVicker, PhD (right).
Photo credit: UC San Diego Health Sciences

Researchers at University of California San Diego School of Medicine and the Salk Institute for Biological Studies have created a unique, cell-by-cell atlas of the amygdala, a small structure deep within the brain that plays a crucial role in controlling emotional responses to drugs. The findings, published October 5, 2023 in Nature Neuroscience, helped the researchers identify a potential new treatment for cocaine addiction, a disease that is poorly understood at the molecular level and has virtually no approved pharmacological treatments.

“There are some drugs that can help treat other addictions, such as those to opioids or nicotine, but there are currently no safe and effective drugs approved for cocaine addictions,” said co-senior author Francesca Telese, PhD, an associate professor in the Department of Psychiatry at UC San Diego School of Medicine. “These findings help address that problem and could also point to universal molecular mechanisms of addiction that we haven’t understood until now.”

Cocaine is a widely used illicit drug and addiction to cocaine is a major public health concern, associated with a rising number of overdose deaths and a high rate of relapse. Despite the threat cocaine addiction poses, not every person who uses cocaine develops an addiction. According to the National Institute on Drug Abuse, an estimated 4.8 million people used cocaine in 2021, while only 1.4 million people had a cocaine use disorder.

Generating circularly polarized light

Setups for ultrafast laser spectroscopy of novel semiconductors.
Photo Credit: Courtesy of Heidelberg University

A research team under the direction of Prof. Dr Felix Deschler at Heidelberg University’s Institute for Physical Chemistry has developed a semiconductor that efficiently generates light and simultaneously gives that light a certain spin. According to the researchers, the so-called chiral perovskite material has great technological potential that can be used for applications in optoelectronics, telecommunications, and information processing.

Generating bright, circularly polarized light has long been a goal of materials science. It is considered exceedingly difficult to achieve a distinct chirality – which describes the rotation of light in a specific direction – as well as high photoluminescence quantum efficiency (PLQE). The PLQE value expresses the ability of a material to emit light. Inorganic semiconductors are able to emit high brightness but usually exhibit low light polarization. In contrast, organic molecular semiconductors do have high polarization, but their brightness is often limited by losses due to dark conditions. “Until now, a material that truly combines the high luminescence quantum efficiency of inorganic semiconductors and the strong chirality of organic molecular systems has been lacking,” reports Felix Deschler.

Antiviral drugs could preserve capacity to produce insulin in type 1 diabetes patients

People with diabetes type 1 must administer insulin hormone for the rest of their lives.
Photo Credit: PhotoMIX-Company

Antiviral drug treatment could preserve the remaining capacity to release insulin in children recently diagnosed with type 1 diabetes, according to a new study by Scandinavian researchers. Johnny Ludvigsson, senior professor at LiU, was involved in the planning of the study, published in Nature Medicine.

The association between type 1 diabetes and viral infection was evidenced long ago. In their present study, the researchers have given antiviral drugs to children and young people newly diagnosed with type 1 diabetes. According to the study, this treatment partially slowed down the loss of insulin production. This is the first study testing antiviral treatment at the onset of diabetes.

The study was led by Knut Dahl-Jørgensen, senior professor at Oslo University Hospital and the University of Oslo.

“This result is an important step in showing that viruses could trigger diabetes. This means that it may be possible to treat and slow down type 1 diabetes with medication. Maybe eventually it will also prevent the disease,” says Knut Dahl-Jørgensen in a press release.

Psychedelics improve mental health, cognition in special ops veterans

The Colorado River toad (Incilius alvarius), also known as the Sonoran Desert toad, is a toad species found in northwestern Mexico and the southwestern United States. It is well known for its ability to exude toxins from glands within its skin that have psychoactive properties.
Photo Credit: Alan Schmierer
(CC0 1.0 DEED)

One treatment each of two psychedelic drugs lowered depression and anxiety and improved cognitive functioning in a sample of U.S. special operations forces veterans who sought care at a clinic in Mexico, according to a new analysis of the participants’ charts. 

The treatment included a combination of ibogaine hydrochloride, derived from the West African shrub iboga, and 5-MeO-DMT, a psychedelic substance secreted by the Colorado River toad. Both are designated as Schedule I drugs under the U.S. Controlled Substances Act.

In addition to relieving symptoms of post-traumatic stress disorder (PTSD), the combined treatment also alleviated cognitive impairment linked to traumatic brain injury – which stood out to researchers from The Ohio State University who led the chart-review analysis. Many special operations forces veterans seeking treatment for complex psychiatric symptoms do not respond to more traditional therapies. 

“What sets this group apart from some other veterans and civilians is that often, they are exposed to repeated traumatic events as a routine part of their jobs. This build-up of exposure to these difficulties seems to produce a cluster of challenges that include traumatic brain injury, which we know in and of itself predisposes people to mental health problems,” said lead author Alan Davis, associate professor and director of the Center for Psychedelic Drug Research and Education (CPDRE) in Ohio State’s College of Social Work. 

“So, the fact that we saw that there were improvements in cognitive functioning linked to brain injury were probably the most striking results, because that’s something we didn’t predict and it’s very new and novel in terms of how psychedelics might help in so many different domains.” 

New findings pave the way for hearing loss therapies

Fluorescence microscopic image of a murine cochlea: the hair cells are marked in green, the cell skeleton in red and the cell nuclei with genetic material in blue.
Image Credit: Maurizio Cortada, University of Basel, Department of Biomedicine

As we age, many of us will eventually need hearing aids. In some cases, the reason for this may be a signaling pathway that controls auditory sensory cell function and is downregulated with age. Researchers at the University of Basel are uncovering clues.

Hearing loss eventually affects almost everyone: Loud noises or simple aging gradually cause the auditory sensory cells and their synapses in the inner ear to degenerate and die off. The only treatment option is a hearing aid or, in extreme cases, a cochlear implant.

“In order to develop new therapies, we need to better understand what the auditory sensory cells need for proper function,” explains Dr. Maurizio Cortada from the Department of Biomedicine at the University of Basel and University Hospital Basel. In collaboration with Professor Michael N. Hall’s research group at the Biozentrum, Cortada investigated which signaling pathways influence the so-called sensory “hair cells” in the inner ear. In the process, the researchers discovered a central regulator, as they report in the journal iScience.

Bumblebees drop to shake off Asian hornets

Asian hornet
Photo Credit: Public Domain 

Bumblebees have a remarkably successful method for fighting off Asian hornets, new research shows.

When attacked, buff-tailed bumblebees drop to the ground – taking the hornets down with them. This either causes the hornet to lose its grip, or the bee raises its sting and tussles until the hornet gives up.

University of Exeter scientists witnessed over 120 such attacks, and were stunned to find that bumblebees fought off the hornets every time.

Despite this, they found bumblebee colonies had reduced growth rates in areas with high numbers of Asian hornets – suggesting the hornets still had a negative impact, even if their attacks at colony entrances usually failed.

Asian hornets (also known as yellow-legged hornets) have already invaded much of mainland Europe and parts of east Asia, and have recently been reported in the US for the first time.

Sightings in the UK and continental Europe are at record levels this year – raising fears for pollinators and prompting substantial control efforts.

A UCLA-led team may have found the key to stimulating human brown adipose tissue into combating obesity

Photo Credit: Kenny Eliason

A UCLA-led team of researchers has found nerve pathways that supply brown adipose tissue (BAT), a type of tissue that releases chemical energy from fat metabolism as heat – a finding that could pave the way toward using it to treat obesity and related metabolic conditions.

The researchers have for the first time detailed this nerve supply and provided examples of how manipulating it can change BAT activity, marking a first step toward understanding how to use it therapeutically, said senior author Dr. Preethi Srikanthan, professor of medicine in the division of endocrinology, diabetes & metabolism, and the director of the Neural Control of Metabolism Center at the David Geffen School of Medicine at UCLA. The largest deposits of BAT are in the neck.

 “We know from previous literature that the sympathetic nerve system is the main ‘on switch’ for BAT activity,” Srikanthan said. “However, the sympathetic nervous system is also responsible for many other stimulatory effects on organs such as the heart and gut. Finding a way to increase activity of BAT alone has been challenging, so finding out the path these sympathetic nerves take to BAT will allow us to explore ways of using nerves to provide a very specific stimulus to activate BAT.”

New type of tiny wasp comes with mysterious, cloud-like structures at ends of antennae

Fossil researchers have discovered a novel genus and species of tiny wasp with a mysterious, bulbous structure at the end of each antenna.
Photo Credit: George Poinar Jr.

Fossil researchers have discovered a novel genus and species of tiny wasp with a mysterious, bulbous structure at the end of each antenna.

The female micro-wasp was described from 100-million-year-old Burmese amber in a study led by George Poinar Jr., who holds a courtesy appointment in the Oregon State University College of Science.

Poinar and Fernando Vega, an independent researcher based in Silver Spring, Maryland, have some ideas about the “clouds” on the antennae, but they don’t know for sure what they are.

“We could find no fossil or extant insect with such antennal structures,” said Poinar, an international expert in using plant and animal life forms preserved in amber to learn about the biology and ecology of the distant past. “We wondered how it could still fly with that weight.”

Increased Deep Sleep Benefits Your Heart

A study participant wears the deep sleep stimulation system.
Photo Credit: Stephanie Huwiler & Silvia Hofer / ETH Zurich

Stimulating the brain with gentle sounds during deep sleep significantly enhances cardiac function, according to a new study. This discovery could have implications not only for cardiovascular diseases but also for competitive sports, among other areas.

Sleep is a vital aspect of human life, with deep sleep being particularly crucial for overall health. The brain recovers during this sleep stage, and the rest of the body seems to regenerate then as well.

Recently, researchers at the University of Zurich and ETH Zurich have shown that increased deep sleep is of particular benefit to the cardiovascular system: targeted stimulation with brief tones during deep sleep causes the heart – in particular the left ventricle – to contract and relax more vigorously. As a result, it pumps blood into the circulatory system and draws it out again more efficiently. The left ventricle supplies most organs, the extremities, and the brain with oxygen-rich arterial blood.

When the heart contracts, the left ventricle is squeezed and wrung out like a wet sponge. The more immediate and more powerful this wringing action, the more blood enters the circulation and the less remains in the heart. This increases blood flow, which has a positive effect on the cardiovascular system.

Feather-tailed possums in New Guinea were originally Aussies: fossil study

The New Guinean feather-tailed possum, Distoechurus pennatus, never developed gliding.
Photo Credit: UNSW Sydney

Scientists have long known that the miniature feather-tailed possums in Australia and the island of New Guinea – members of the marsupial family Acrobatidae – were evolutionary cousins, but where they started their long evolutionary journey has been a bit of a mystery – until now.

According to recently published research in Alcheringa: An Australasian Journal of Paleontology, paleontologists from UNSW Sydney say the modern-day animals on either side of the Torres Strait came from common ancestors in Australia before diverging into their living gliding and non-gliding descendants, known as Acrobates pygmaeus in Australia and Distoechurus pennatus in New Guinea.

Professor Mike Archer from UNSW’s School of Biological Earth and Environmental Sciences says that in an analysis of extinct species found at Riversleigh World Heritage Area fossil deposits in north-western Queensland revealed that ancestors of both groups of possums were present in Australia by at least 25 million years ago.

“As Riversleigh started revealing its prehistoric treasures, we discovered four different species of feathertail possums, the first ‘deep-time’ fossil record known for the whole family,” he says.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles