. Scientific Frontline

Monday, October 23, 2023

Preventing collateral damage in cancer treatment

The Electronic Polymer Dosimeter for Radiotherapy, created by a team at Sandia National Laboratories.
 Photo Credit: Spencer Toy

Using a simple concept and a patented Sandia sensor that detects radioactive materials, a team at Sandia National Laboratories has developed a patch to stop damage to healthy tissue during proton radiotherapy, one of the best tools to target certain cancerous tumors.

“This is an important need, especially among pediatric patients,” said Patrick Doty, one of the creators of the patch. Proton radiation therapy is used to send a high dose of radiation into a specific area of the body to disrupt and destroy tumor cells, but the radiation also kills nearby healthy cells. The goal is to be as precise as possible when targeting the radiation, but human movement is an issue especially when dealing with children.

“If you breathe, you move. When your heart beats, you move. You can’t stop those types of motions. And kids are wiggly. You can’t keep them still for long,” Doty said. “Sometimes doctors must resort to general anesthesia and the treatments sometimes go day after day for six weeks. Imagine going to the hospital and having to be put under every day for weeks. That is not good for anyone, but it’s especially bad for kids.”

Researchers probe molten rock to crack Earth’s deepest secrets

Deep inside rocky planets like Earth, the behavior of iron can greatly affect the properties of molten rock materials: properties that influenced how Earth formed and evolved. Scientists used powerful lasers and ultrafast X-rays to recreate the extreme conditions in these molten rock materials, called silicate melts, and measure properties of iron. 
Illustration Credit: Greg Stewart/SLAC National Accelerator Laboratory

Deep inside rocky planets like Earth, the behavior of iron can greatly affect the properties of molten rock materials: properties that influenced how Earth formed and evolved. 

In fact, the evolution of our entire planet may be driven by the microscopic quantum state of these iron atoms. One special feature of iron is its “spin state,” which is a quantum property of the electrons in each iron atom that drives their magnetic behavior and reactivity in chemical reactions. Changes in the spin state can influence whether iron prefers to be in the molten rock or in solid form and how well the molten rock conducts electricity.

Until now, it’s been challenging to recreate the extreme conditions in these molten rock materials, called silicate melts, to measure the spin state of iron. Using powerful lasers and ultrafast X-rays, an international team of researchers at the Department of Energy’s SLAC National Accelerator Laboratory, Stanford University, Universite ́ Grenoble Alpes, Laboratoire pour l’Utilisation des Lasers Intenses (LULI), and Arizona State University overcame this challenge. They showed that at extremely high pressures and temperatures, the iron in silicate melts mostly has a low-spin state, meaning its electrons stay closer to the center and pair up in their energy levels, making the iron less magnetic and more stable.

Genomic Stability: A Double-Edged Sword for Sharks

The adult pair of epaulette sharks from the study.
Photo Credit: Frank J. Tulenko

Sharks have existed for millions of years, rarely develop cancer, and react sensitively to ecological changes. An international study led by Würzburg scientists shows that one explanation lies in the fish's genes.

Sharks have been populating the oceans for about 400 to 500 million years. While our planet and many of its inhabitants have undergone massive changes several times during this period, this basal group of vertebrates has remained somewhat constant. Their body shape and biology has hardly changed since then.

An international research team from Germany, Australia, Sweden, and the USA has now discovered the reason for this. They found that sharks have the lowest mutation rate between generations ever recorded in vertebrates.

The study was led and coordinated by the research group of Senior Professor Manfred Schartl at the Department of Developmental Biochemistry of the Julius-Maximilians-Universität Würzburg (JMU).

It has now been published in the journal Nature Communications.

Lung cancer outcomes significantly improved with immunotherapy-based treatment given before and after surgery

John Heymach, M.D., Ph.D., chair of Thoracic/Head & Neck Medical Oncology at MD Anderson.
Photo Credit: Courtesy of University of Texas MD Anderson Cancer Center

A regimen of pre-surgical immunotherapy and chemotherapy followed by post-surgical immunotherapy significantly improved event-free survival (EFS) and pathologic complete response (pCR) rates compared to chemotherapy alone for patients with operable non-small cell lung cancer (NSCLC), according to results of a Phase III trial reported by researchers at The University of Texas MD Anderson Cancer Center.

The findings, published today in the New England Journal of Medicine, were first presented at the American Association for Cancer Research (AACR) Annual Meeting 2023.

The AEGEAN trial evaluated durvalumab given perioperatively, meaning therapy is given both before and after surgery. Participants on the trial received either pre-surgical (neoadjuvant) durvalumab and platinum-based chemotherapy followed by post-surgical (adjuvant) durvalumab or neoadjuvant placebo and chemotherapy followed by adjuvant placebo.

AEGEAN was the first Phase III trial investigating perioperative immunotherapy in patients with resectable NSCLC to report positive outcomes, and these data add to the growing evidence supporting the benefits of both neoadjuvant and adjuvant immunotherapy for these patients

Research shows climate change boosts likelihood of toxin releases from algal blooms in American lakes

 

Blue-green algae scums washing up on shore of Milford Reservior, Kansas, in 2017.
Photo Credit: Ted Harris

A broad analysis of lake water quality across the United States reveals human-driven climate change is increasing risks of high toxin concentrations from algal blooms in U.S. lakes, posing increasing hazards to people and wild and domestic animals, including dogs.

The investigation, recently published as the cover story in Nature Water, relies on data from lake-water samples from 2,804 U.S. lakes collected between 2007 and 2017 by the Environmental Protection Agency.

The authors, including a researcher at the University of Kansas, use the EPA’s data to predict the likelihood that a toxin called microcystin, produced by some blue-green algal species, will spike above water quality thresholds in the years ahead. Microcystin can damage the liver in humans and can kill wild and domestic animals.

Thursday, October 19, 2023

UConn Health Researchers Find that Youthful Proteins Help Nerves Regrow

Three sections of optic nerve were injured by crushing (the white diamond on the far left of each nerve marks the crush point.) The lower two nerves each express genes (Rpl7 or Rpl7a) newly identified by the Trakhtenberg lab as promoting nerve axon regeneration. The axons carry the bright green dye. The insets to the right show how much more axon regrowth is occurring in the nerves that express the regeneration genes, and how no regrowth happens in the normal control (top).
Image Credit: Courtesy of Trakhtenberg Lab/UConn Health

Damaged nerves of the brain, eye, and spinal cord cannot grow back. But specific gene therapies might be able to change this, leading to treatments for paralysis and other forms of nerve damage, UConn Health researchers report in the October issue of Experimental Neurology.

Axons are the long arms of nerve cells that reach from our extremities to our spinal cord, and from our eye to our brain. Injuries that smash or sever axons—and often the large bundles of axons that we commonly call nerves—can cause paralysis, blindness, lack of sexual function, or other devastating outcomes. Most of the time, these central nervous system axons don’t repair themselves, and we have no good treatments for this.

Axons fail to regenerate for several reasons. Some of them have to do with the environment the axon grows in, but another reason is that the ability to grow is lost as the nervous system matures during and after birth. The loss of key proteins prevents regrowth once an organism matures, reports a team of researchers at UConn School of Medicine.

BNP Peptide a Culprit in Eczema

Image Credit: Freepik

Researchers from North Carolina State University have pinpointed a particular peptide’s role in activating atopic dermatitis, or eczema. The work could lead to more effective treatments for the condition.

Atopic dermatitis (AD) is a skin condition characterized by itching, irritated and thickened skin at the site of the irritation. The brain natriuretic peptide (BNP) is a peptide, or short chain of amino acids, that is elevated in patients with AD.

“BNP is expressed in sensory neurons, the neurons responsible for conveying sensation to the brain via the spinal cord,” says Santosh Mishra, associate professor of molecular biomedical sciences at NC State and corresponding author of the work. “We know from previous work that BNP helps translate the sensation of itch from the skin to the brain. In this work we wanted to see if BNP was involved in activating AD.”

In a chemically induced mouse model of AD, the researchers saw that mice without BNP did not exhibit the thickened or irritated skin commonly associated with AD, and their itching was reduced compared with control mice who did have BNP.

Scientists propose super-bright light sources powered by quasiparticles

A team of scientists ran advanced computer simulations on supercomputers to propose a way to use quasiparticles for super-bright light sources.
Image Credit: Bernardo Malaca

An international team of scientists is rethinking the basic principles of radiation physics with the aim of creating super-bright light sources. In a new study published in Nature Photonics, researchers from the Instituto Superior Técnico (IST) in Portugal, the University of Rochester, the University of California, Los Angeles, and the Applied Optics Laboratory in France proposed ways to use quasiparticles to create light sources as powerful as the most advanced ones in existence today, but much smaller.

“The most fascinating aspect of quasiparticles is their ability to move in ways that would be disallowed by the laws of physics governing individual particles.”

Quasiparticles are formed by many electrons moving in sync. They can travel at any speed—even faster than light—and withstand intense forces, like those near a black hole.

“The most fascinating aspect of quasiparticles is their ability to move in ways that would be disallowed by the laws of physics governing individual particles,” says John Palastro, a senior scientist at the Laboratory for Laser Energetics, an assistant professor in the Department of Mechanical Engineering, and an associate professor at the Institute of Optics.

New non-invasive form of deep brain stimulation could provide alternative treatment for brain diseases

Photo Credit: Helix Centre

Researchers at the UK Dementia Research Institute have developed a new form of deep brain stimulation that does not require surgery and could provide an alternative treatment option for brain diseases such as Alzheimer’s.

The exciting new technology has been successfully trialed with 20 healthy volunteers for the first time by Dr Nir Grossman and Dr Ines Violante and the team at the UK Dementia Research Institute (UK DRI) at Imperial College London and the University of Surrey.

Known as temporal interference (TI), it works by safely delivering differing frequencies of electrical field through electrodes placed on the scalp and different parts of the head. The overlapping electrical fields enable a deep region of the brain known as the hippocampus to be targeted by electrical stimulation, without affecting the surrounding areas – a procedure that until now required brain surgery. 

Cut emissions and improve farming to protect wilderness

Photo Credit: Dave Willhite

Humanity must cut carbon emissions and use farmland more efficiently to protect our planet’s remaining wilderness, new research shows.

Climate change is making some wilderness areas more suitable for crop growing, heightening the risk of agricultural expansion, especially in northern areas including Canada, Scandinavia and Russia.

By assessing “future climate suitability” for more than 1,700 crop varieties, the study projects 2.7 million square kilometers of wilderness will become newly suitable for agriculture over the next 40 years.

This is 7% of the world’s total remaining wilderness outside Antarctica.

The study, by the University of Exeter, also projects that the variety of crops that can be grown will decrease on 72% of currently cultivable land worldwide – further driving pressure to expand farming into wilderness.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles