. Scientific Frontline

Thursday, October 26, 2023

New RNA-regulating proteins found to be key in severe asthma

Photo Credit: Cottonbro Studio

A new publication in Frontiers in Cell and Developmental Biology led by researchers from King’s has revealed important information on the role of mRNA regulating proteins in asthma for the first time.

Asthma is the most common chronic inflammatory disease of the airways that people experience. It affects over 5 million people in the UK and is estimated to impact approximately 300 million people worldwide.

Asthma is a lung condition which causes breathing problems due to inflammation of the airway tubes that carry air in and out of the lungs. While the inflammatory process that causes asthma is well known among researchers and clinicians, the expression of genes underpinning this inflammation is poorly understood.

Better batteries for electric cars

Eric Ricardo Carreon Ruiz (left) and Pierre Boillat in front of part of PSI's Swiss spallation neutron source SINQ. There, at the BOA experimental station, they conducted their investigations.
Photo Credit: Paul Scherrer Institute/Mahir Dzambegovic

PSI researchers are using neutrons to make changes in battery electrolytes visible. The analysis enables better understanding of the physical and chemical processes and could aid in the development of batteries with better characteristics. The results have now been published in Science Advances.

The range is too limited, charging is too slow when it’s cold . . . the list of prejudices against electric cars is long. Even though progress is rapid, batteries remain the critical component for electromobility – as well as for many other applications, from smartphones to large storage devices designed to stabilize the power grid. The problem: Battery developers still lack a full understanding of what is happening, chemically and physically, during charging and discharging, especially in liquid electrolytes between the two electrodes through which charge carriers are exchanged.

Now Eric Ricardo Carreon Ruiz of PSI is bringing light into this darkness. A doctoral researcher in Pierre Boillat’s group at PSI, he is using neutrons from the Swiss spallation neutron source SINQ to investigate different electrolytes, studying for example their behavior at fluctuating temperatures. His results provide important insights that could help in the development of new electrolytes and higher-performance batteries.

First digital atlas of human fetal brain development published

Image Credit: Geralt

The first digital atlas showing how the human brain develops in the womb has been published by a global research team led by the University of Oxford.

A team of over 200 researchers around the world, involving multiple health and scientific institutions, led by the University of Oxford, has today published, in the journal Nature, the first digital atlas showing the dynamics of normative maturation of each hemisphere of the fetal brain between 14- and 31-weeks’ gestation - a critical period of human development.

The atlas was produced using over 2,500 3-dimensional ultrasound (3D US) brain scans that were acquired serially during pregnancy from 2,194 fetuses in the INTERGROWTH-21st Project, which is a large population-based study of healthy pregnant women living in eight diverse geographical regions of the world (including five in the Global South), whose children had satisfactory growth and neurodevelopment at 2 years of age.

The study is unique because, for the first time, an international dataset of 3D US scans, collected using standardized methods and equipment, has been analyzed with advanced artificial intelligence (AI) and image processing tools to construct a map showing how the fetal brain matures as pregnancy advances.

Scientists Modeled How to Improve Thrombosis Treatment

Physicists led by Andrey Zubarev have calculated how to increase the speed of drug delivery.
Photo Credit: Anna Marinovich

Scientists from the Ural Federal University and the Côte d'Azur University (France) have developed a mathematical model to improve the delivery of drugs that restore blood flow in thrombosed blood vessels. The scientific paper was published in the Journal of Magnetism and Magnetic Materials

Thrombosis of the blood vessels is a serious and difficult-to-treat condition that can often be fatal. The main method of treating thrombosis is the injection of thrombolytics - drugs that dissolve blood clots and restore blood flow. However, thrombolytics spread too slowly in a vessel with blocked blood flow, significantly reducing the effectiveness of the treatment.

"Attempts are being made to accelerate the distribution of thrombolytics through various physical effects. For example, researchers at the University of Texas have proposed introducing a drop of magnetic nanoparticles into a thrombosed vessel and then subjecting it to an alternating - oscillating or, for example, rotating - magnetic field. As a result, the nanoparticles should be set into rotational and translational motion, involving the surrounding fluid, i.e. the blood in the vessel, in this motion. This should lead to the intensification of the mixing of a drop of thrombolytic agent with blood and accelerate the "spreading" of the drop through the vessel. As a result, the drug reaches the thrombus more quickly," describes Andrey Zubarev, professor at the Department of Theoretical and Mathematical Physics at UFU, head of the development of the mathematical model and co-author of the article.

On the trail of a great mystery; how did the baboons get to ancient Egypt?

The first sequenced mitogenome of a mummified non-human primate connects an Egyptian ba-boon dated to ca. 800-540 BCE to modern baboon populations in Eritrea, Ethiopia and eastern Su-dan, providing evidence for Egyptian-Adulite trade centuries earlier than current archaeological evidence.
 Illustration Credit: © 2023 by Mike Costelloe
(CC BY-NC-ND 4.0.)

An interdisciplinary project led by primatologist Gisela Kopp is using genetic analysis to determine the geographic origin of mummified baboons found in ancient Egypt. The team finds evidence that the two legendary trading regions of Punt and Adulis may have been the same place separated by a thousand years of history.

In ancient Egypt, various deities were portrayed as animals. Thoth, the god of learning and wisdom was represented by a hamadryas baboon. Baboons, probably held in captivity in Egypt, were mummified as votive offerings after their deaths. Today, no wild baboons live in Egypt, and there is no evidence to suggest that these primates did so in the past. In an interdisciplinary project involving biologists, Egyptologists and anthropologists, Gisela Kopp, a biologist from Konstanz who conducts research on non-human primates, pursued the question of how and from where baboons came to Egypt. The results have been published in the current issue of the journal eLife.

Brain implant at OHSU successfully controls both seizures and OCD

OHSU neurosurgeon Ahmed Raslan, M.D., and patient Amber Pearson.
Photo Credit: OHSU/Christine Torres Hicks

A patient at Oregon Health & Science University is the first in the world to benefit from a single stimulator implanted in the brain to effectively control two life-altering conditions: seizures caused by epilepsy and compulsive behavior caused by obsessive-compulsive disorder, or OCD.

Amber Pearson, 34, of Albany, said her seizures are under better control, but the relief from her psychiatric condition is profound.

“OCD is worse than having the seizures,” she said. “Epilepsy brings limitations to my life, but OCD controlled it.”

In the case study, published in the journal Neuron, co-authors from institutions across the country describe the interactive programming of the responsive neurostimulation system, or RNS, that now functions seamlessly to control the compulsions that once ruled her life.

“Before I started treatment with my RNS, I would wash my hands until they would bleed,” Pearson said. “My hands would be so dry that bending my fingers would crack the skin of my knuckles.”

Deep learning speeds up galactic calculations

A more efficient simulation.
During a supernova simulation, (left) shows the prediction by a current simulation method. (right) shows the prediction by 3D-MIM, which looks close enough to the that of the current leading method, but it takes far less time to execute, saving time, energy and costs for computing time.
Image Credit: ©2023 Hirashima et al.
(CC-BY-ND)

Supernovae, exploding stars, play a critical role in the formation and evolution of galaxies. However, key aspects of them are notoriously difficult to simulate accurately in reasonably short amounts of time. For the first time, a team of researchers, including those from The University of Tokyo, apply deep learning to the problem of supernova simulation. Their approach can speed up the simulation of supernovae, and therefore of galaxy formation and evolution as well. These simulations include the evolution of the chemistry which led to life.

When you hear about deep learning, you might think of the latest app that sprung up this week to do something clever with images or generate humanlike text. Deep learning might be responsible for some behind-the-scenes aspects of such things, but it’s also used extensively in different fields of research. Recently, a team at a tech event called a hackathon applied deep learning to weather forecasting. It proved quite effective, and this got doctoral student Keiya Hirashima from the University of Tokyo’s Department of Astronomy thinking.

Wednesday, October 25, 2023

A molten layer at the base of the Martian mantle ?

Artist view of Mars interior structure showing a molten layer at the base of the mantle and above the core. The purple line shows the path followed in Mars by the waves generated by the meteorite impact that occurred on September 2021 and diffracted along the CMB. The blue line represents the path followed by a seismic wave reflected at the top of the molten basal layer.
Illustration Credits: CNES/IPGP.

The analysis, by a team of scientists involved in the InSight mission, of seismic data recorded on Mars after a meteorite impact that occurred in September 2021 drastically changes our view of the internal structure and evolution of the Red Planet. Based on these results and previous geophysical data, a study published on October 26 in the journal Nature, in which researcher Attilio Rivoldini from the Royal Observatory of Belgium participated, proposes a new model for the interior of Mars, with a heterogeneous mantle containing a molten silicate layer above the liquid metal core.

The first results based on data from the InSight mission significantly improved our knowledge of the interior structure of Mars. Assuming that the mantle is compositionally homogeneous and entirely solid, the results showed that the liquid metal core has a radius of about 1830±40 km and a relatively low density (6-6.2 g/cm3) with a large concentration of light elements. The size of the metal core was determined by the detection of seismic waves reflected at a solid-liquid interface ascribed to be the Core-Mantle Boundary (CMB).

Zika Infection in Pregnant Macaques Slows Fetal Growth

Female rhesus macaque monkeys and infants at the California National Primate Research Center at UC Davis.
Photo Credit: Courtesy of University of California, Davis

Zika virus infection in pregnant rhesus macaques slows fetal growth and affects how infants and mothers interact in the first month of life, according to a new study from researchers at the California National Primate Research Center at the University of California, Davis. The work, published Oct. 25 in Science Translational Medicine, has implications for both humans exposed to Zika virus and for other viruses that can cross the placenta, including SARS-CoV2, responsible for the COVID-19 pandemic.

“Initially I thought this was a story about Zika, but as I looked at the results, I think this is also a story about how fetal infections in general affect developmental trajectories,” said Eliza Bliss-Moreau, professor of psychology at UC Davis and senior author on the paper.

In most people, Zika virus infection causes mild or no symptoms and leaves long-lasting immunity. But during pregnancy, the virus can cross the placenta and cause damage to the nervous system of the fetus. In extreme cases, it can cause microcephaly in humans.

Oregon State researchers uncover mechanism for treating dangerous liver condition

Illustration Credit: Julien Tromeur

A study spearheaded by Oregon State University has shown why certain polyunsaturated fatty acids work to combat a dangerous liver condition, opening a new avenue of drug research for a disease that currently has no FDA-approved medications.

Scientists led by Oregon State’s Natalia Shulzhenko, Andrey Morgun and Donald Jump used a technique known as multi-omic network analysis to identify the mechanism through which dietary omega 3 supplements alleviated nonalcoholic steatohepatitis, usually abbreviated to NASH.

The mechanism involves betacellulin, a protein growth factor that plays multiple positive roles in the body but also contributes to liver fibrosis, or scarring, and the progression to cirrhosis and liver cancer.

“We only succeeded in finding these surprising results because we implemented an entirely unbiased approach that incorporated a diverse type of big data analysis ranging from lipids and metabolites to whole tissue and single-cell RNA sequences,” said Morgun, a researcher in the OSU College of Pharmacy.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles