. Scientific Frontline

Monday, December 18, 2023

Exoplanets' climate – it takes nothing to switch from habitable to hell

Runaway greenhouse effect can transform a temperate habitable planet with surface liquid water ocean into a hot steam dominated planet hostile to any life
Image Credit: (Chaverot et al., 2023). © Thibaut Roger / UNIGE

The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers from the University of Geneva (UNIGE), with the support of the CNRS laboratories of Paris and Bordeaux, has achieved a world’s first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from the initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun’s luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable. These results are published in Astronomy & Astrophysics.

New possibilities for a healing toxin

Richard Kammerer and Oneda Leka in one of the PSI laboratories in front of an apparatus that is used, among other things, to purify proteins.
Photo Credit: Paul Scherrer Institute/Mahir Dzambegovic

PSI researchers have discovered a surprising trick that could expand the possibilities for medical use of botulinum toxin A1, better known under the name Botox, as an active agent. They have developed antibody-like proteins that speed up the enzyme’s effect on the transmission of nerve signals. This suggests that Botox might, for example, be able to relief pain more quickly than before. The study has now been published in the journal Nature Communications.

Botulinum neurotoxin A1, better known under the trademark Botox, is actually a nerve toxin produced by bacteria. It gained widespread public awareness through its use as a cosmetic aid. Many people have it injected into wrinkles to make them look younger. The substance blocks signal transmission from nerves to muscles, thus relaxing them so that facial features appear smooth. What is less well known: Botox is also used very often in therapeutic medicine to treat conditions that can be traced back to cramping muscles or faulty nerve signals, including pains, spasms, bladder weakness, grinding of teeth, and misalignments, for example of the eyes. Botox is even used in treating stomach cancer, to block the vagus nerve and thus slow down tumor growth.

In any therapy, it is crucial to use this highly effective medicine in a very targeted manner with careful dosage, since Botox is the most potent natural nerve toxin of all, which can lead to dangerous paralysis in a clinical picture called botulism. Just one hundred nanograms or so administered intravenously can be enough to kill a person, because the toxin paralyses the respiratory muscles, along with others.

AI screens for autism in the blink of an eye

Image Credit: Placidplace

With a single flash of light to the eye, artificial intelligence (AI) could deliver a faster and more accurate way to diagnose autism spectrum disorder (ASD) in children, according to new research from the University of South Australia and Flinders University.

Using an electroretinogram (ERG) - a diagnostic test that measures the electrical activity of the retina in response to a light stimulus – researchers have deployed AI to identify specific features to classify ASD.

Measuring retinal responses of 217 children aged 5-16 years (71 with diagnosed ASD and 146 children without an ASD diagnosis), researchers found that the retina generated a different retinal response in the children with ASD as compared to those who were neuro typical.

The team also found that the strongest biomarker was achieved from a single bright flash of light to the right eye, with AI processing significantly reducing the test time. The study found that higher frequency components of the retinal signal were reduced in ASD.

Conducted with University of Connecticut and University College London, the test could be further evaluated to see if these results could be used to screen for ASD among children aged 5 to 16 years with a high level of accuracy.

Friday, December 15, 2023

New research shows exercise can reduce the risk of stroke after menopause

Regular exercise could reduce the risk of stroke in post-menopausal women, according to new research partly undertaken in Swansea.
Photo Credit: Marcus Aurelius

The pilot study, which will now be followed by a more extensive, longer-term trial, suggested that the greatest benefits were to those women who exercised during or shortly after the menopause rather than many years later.

The study team, including Adrian Evans, Professor of Emergency Medicine at Swansea University Medical School, has now published its findings in the journal Heart and Circulatory Physiology.

Professor Evans said: “A vascular disease such as stroke is more common as you get older. But the incidence of stroke is higher in post-menopausal women than in men of a similar age and we are not sure why that is.

“One of the reasons, it is thought, is that before they go through the menopause, the estrogen – the hormones – have a protective effect. Post-menopause, the estrogen level is significantly reduced.

“And when they go through the menopause, they get an immune inflammatory response, which may produce abnormal clotting and changes in their blood flow, which in turn could cause a stroke.”

Electronic pathways may enhance collective atomic vibrations’ magnetism

Andrey Baydin (left) and Fuyang Tay
Photo Credit: Gustavo Raskosky/Rice University

Materials with enhanced thermal conductivity are critical for the development of advanced devices to support applications in communications, clean energy and aerospace. But in order to engineer materials with this property, scientists need to understand how phonons, or quantum units of the vibration of atoms, behave in a particular substance.

“Phonons are quite important for studying new materials because they govern several material properties such as thermal conductivity and carrier properties,” said Fuyang Tay, a graduate student in applied physics working with the Rice Advanced Magnet with Broadband Optics (RAMBO), a tabletop spectrometer in Junichiro Kono’s laboratory at Rice University. “For example, it is widely accepted that superconductivity arises from electron–phonon interactions.

“Recently, there has been growing interest in the magnetic moment carried by phonon modes that show circular motion, also known as chiral phonons. But the mechanisms that can lead to a large phonon magnetic moment are not well understood.”

Now an international team of researchers led by Felix Hernandez from Brazil’s Universidade de São Paulo and Rice assistant research professor Andrey Baydin has published a study detailing the intricate connections between the magnetic properties of these quantum whirling dervishes and a material’s underlying topology of the electronic band structure, which determines the range of energy levels that electrons have within it.

Using a fiber optic cable to study Arctic seafloor permafrost

A permafrost-created pingo or “ice pimple” in the North Slope of Alaska. Scientists from Sandia National Laboratories have been using a fiber optic cable to study permafrost in the Arctic seafloor to improve the understanding of global climate change.
Photo Credit: Courtesy of Sandia National Laboratories

The Arctic is remote, with often harsh conditions, and its climate is changing rapidly — warming four times faster than the rest of the Earth. This makes studying the Arctic climate both challenging and vital for understanding global climate change.

Scientists at Sandia National Laboratories are using an existing fiber optic cable off Oliktok Point on the North Slope of Alaska to study the conditions of the Arctic seafloor up to 20 miles from shore. Christian Stanciu, project lead, will present their latest findings on Friday, Dec. 15 at AGU’s Fall Meeting in San Francisco.

Their goal is to determine the seismic structure of miles of Arctic seafloor. Using an emerging technique, they can spot areas of the seafloor where sound travels faster than on the rest of the seafloor, typically because of more ice. They have identified several areas with lots of ice, said Stanciu, a Sandia geophysicist.

The scientists also used the cable to determine temperatures over the stretch of seafloor and monitored temperature changes over seasons. "This data, unlike any collected before, was inserted into a computer model to infer the distribution of submarine permafrost," said Jennifer Frederick, a computational geoscientist.

“One of the innovations of this project is that we can now use a single fiber to get acoustic and temperature data,” Stanciu said. “We developed a new system to remotely collect both types of data using one fiber strand. We’re getting some interesting results.”

The keto diet protects against epileptic seizures. Scientists are uncovering why

Photo Credit: Jenna Hamra

The high-fat, low-carbohydrate ketogenic diet is more than just a trendy weight-loss tactic. It has also been known to help control seizures in children with epilepsy, particularly those who don’t respond to first-line anti-seizure medications.

In a new UCLA study published in the journal Cell Reports, researchers demonstrate that the changes the diet causes in the human gut microbiome — the trillions of bacteria and other microorganisms that live in the digestive tract — can confer protection against seizures in mice.

Understanding how the function of the microbiome is altered by the diet could aid in the development of new therapeutic approaches that incorporate these beneficial changes while avoiding certain drawbacks of the diet, said the study’s lead author, Gregory Lum, a postdoctoral researcher in the laboratory of UCLA professor Elaine Hsiao.

The ketogenic diet is not recommended as a primary anti-seizure option because patients are often averse to drastic changes in their food intake or have trouble staying on the diet due to its strict requirements and potential side effects like, nausea, constipation and fatigue.

Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices

Ultrafast Laser Lab.
Photo Credit: KU Marketing Communications

Research appearing in ACS Nano, a premier journal on nanoscience and nanotechnology, reveals the ballistic movement of electrons in graphene in real time.

The observations, made at the University of Kansas’ Ultrafast Laser Lab, could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.

“Generally, electron movement is interrupted by collisions with other particles in solids,” said lead author Ryan Scott, a doctoral student in KU’s Department of Physics & Astronomy. “This is similar to someone running in a ballroom full of dancers. These collisions are rather frequent — about 10 to 100 billion times per second. They slow down the electrons, cause energy loss and generate unwanted heat. Without collisions, an electron would move uninterrupted within a solid, similar to cars on a freeway or ballistic missiles through air. We refer to this as ‘ballistic transport.’”

Scott performed the lab experiments under the mentorship of Hui Zhao, professor of physics & astronomy at KU. They were joined in the work by former KU doctoral student Pavel Valencia-Acuna, now a postdoctoral researcher at the Northwest Pacific National Laboratory.

Zhao said electronic devices utilizing ballistic transport could potentially be faster, more powerful and more energy efficient.

Revealed: Some microbiome species regulate their entire bacterial ecosystem

Image Credit: Scientific Frontline 

A team of mathematicians and biologists led by Carnegie’s Will Ludington and Technische Universität Berlin’s Michael Joswig developed a new approach to reveal key genes and species that regulate biological networks. Their work, published this week in Proceedings of the National Academy of Sciences, identifies genes in cells and species in ecosystems that sit at the top of a regulatory hierarchy and drive evolutionary and ecological trajectories.

Charles Darwin concluded On the Origin of Species with the famous “tangled bank” analogy to explain how organisms in an ecosystem affect one another’s fitness. “It is interesting to contemplate a tangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth,” Darwin wrote. “And to reflect that these elaborately constructed forms, so different from each other, and dependent upon each other in so complex a manner, have all been produced by laws acting around us.” 

To map these interactions in ecosystems, ecologists use network analysis to study the connections. Keystone species, such as wolves, have a disproportionately large impact on their communities and the other organisms within them.

New Strategy Improves Perovskites' Oxygen Reduction Performance in Hydrogen Fuel Cells

Evidence of calcium leaching during ORR, leading to the high surface area of the LCMO64.
Illustration Credit: ©Hao Li et al.

A research group has reported on a new method to enhance the electrochemical surface area (ECSA) in a calcium-doped perovskite, La0.6Ca0.4MnO3 (LCMO64), thereby overcoming a common bottleneck in the application of perovskite oxides as electrocatalysts in hydrogen fuel cells.

Perovskite oxides exhibit interesting and diverse properties, making them valuable in various technological applications. Their high intrinsic activities also position them as a promising alternative to noble metal catalysts for efficiently catalyzing the oxygen reduction reaction (ORR). However, their application is still hampered by their poor electrical conductivity and low specific surface area.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles