![]() |
Simulation of neutron star collision. Detections of gravitational waves from merging neutron stars tipped off researchers here on Earth that it should be possible to predict how neutrons interact with atomic nuclei. Image Credit: NASA's Goddard Space Flight Center/CI Lab (CC BY-ND 4.0 DEED) |
Nuclear power is considered one of the ways to reduce dependence on fossil fuels, but how to deal with nuclear waste products is among the issues surrounding it. Radioactive waste products can be turned into more stable elements, but this process is not yet viable at scale. New research led by physicists from the University of Tokyo reveals a method to more accurately measure, predict and model a key part of the process to make nuclear waste more stable. This could lead to improved nuclear waste treatment facilities and also to new theories about how some heavier elements in the universe came to be.
The very word “nuclear” can be a bit of a trigger for some people, understandably so in Japan, where the atomic bomb and Fukushima disaster are some of the pivotal moments in its modern history. Yet, given the relative scarcity of suitable space in Japan for renewable forms of energy like solar or wind, nuclear power is considered to be a critical part of the effort to decarbonize the energy sector. Because of this, researchers are hard at work trying to improve safety, efficiency and other matters relating to nuclear power. Associate Professor Nobuaki Imai from the Center for Nuclear Study at the University of Tokyo and his colleagues think they can contribute to improving a key aspect of nuclear power, the processing of waste.