. Scientific Frontline

Tuesday, February 20, 2024

Magnetic effects at the origin of life?

Biomolecules such as our genetic material, DNA, basically exist in two mirror-image forms; however, all living organisms only ever use one of them. Why this is the case is still unclear.
Image Credit: Gemini Advance

It's the spin that makes the difference

Biomolecules such as amino acids and sugars occur in two mirror-image forms – in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers at Empa and Forschungszentrum Jülich in Germany have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.

The so-called homochirality of life – the fact that all biomolecules in living organisms only ever occur in one of two mirror-image forms – has puzzled a number of scientific luminaries, from the discoverer of molecular chirality, Louis Pasteur, to William Thomson (Lord Kelvin) and Nobel Prize winner Pierre Curie. A conclusive explanation is still lacking, as both forms have, for instance, the same chemical stability and do not differ from each other in their physico-chemical properties. The hypothesis, however, that the interplay between electric and magnetic fields could explain the preference for one or the other mirror-image form of a molecule – so-called enantiomers – emerged early on.

It was only a few years ago, though, that the first indirect evidence emerged that the various combinations of these force fields can indeed "distinguish" between the two mirror images of a molecule. This was achieved by studying the interaction of chiral molecules with metallic surfaces that exhibit a strong electric field over short distances. The surfaces of magnetic metals such as iron, cobalt or nickel thus allow electric and magnetic fields to be combined in various ways – the direction of magnetization is simply reversed, from "North up – South down" to "South up – North down". If the interplay between magnetism and electric fields actually triggers "enantioselective" effects, then the strength of the interaction between chiral molecules and magnetic surfaces should also differ, for example – depending on whether a right-handed or left-handed molecule "settles" on the surface.

Where Neural Stem Cells Feel at Home

In the laboratory, the Bochum researchers are investigating which environment offers neural stem cells the best chances of survival.
Photo Credit: © RUB, Marquard

Injuries in the central nervous system heal poorly because cavities scar. Researchers hope to remedy this problem by filling the cavities in such a way that stem cells feel comfortable in them.

Researchers from Bochum and Dortmund have created an artificial cell environment that could promote the regeneration of nerves. Usually, injuries to the brain or spinal cord don’t heal easily due to the formation of fluid-filled cavities and scars that prevent tissue regeneration. One starting point for medical research is therefore to fill the cavities with a substance that offers neural stem cells optimal conditions for proliferation and differentiation. The team from Ruhr University Bochum and TU Dortmund University, both in Germany, showed that positively charged hydrogels can promote the survival and growth of stem cells.

Dr. Kristin Glotzbach and Professor Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology in Bochum cooperated with Professor Ralf Weberskirch and Dr. Nils Stamm from the Faculty of Chemistry and Chemical Biology at TU Dortmund University. The team describes the findings in the American Chemical Society Journal Biomaterials Science and Engineering.

Invasive weed could be turned into a viable economic crop

Prof Rahman and Dr Karim collecting paddy melons for urease enzyme extraction.
Photo Credit: Courtesy of University of South Australia

One of the most invasive Australian weeds is being touted as a potential economic crop, with benefits for the construction, mining and forestry industries, and potentially many First Nations communities.

The prickly paddy melon weed, which costs the agricultural industry around $100 million a year in lost grain yields, cattle deaths, and control measures, could turn into an unlikely money spinner as a source of urease enzymes to create bio cement and prevent soil erosion.

In a world-first study, researchers at the University of South Australia (UniSA) screened 50 native plants and weeds to find a cheaper and more environmentally friendly source for bulk producing of urease enzymes to strengthen soil.

Among the weeds tested, paddy melon ticked all the boxes and was almost as effective as soybean enzymes, which are more expensive and used primarily for food.

UniSA geotechnical engineer Professor Mizanur Rahman and his students collected the paddy melon weed from roadsides in Port Pirie in South Australia. After crushing the seeds and extracting enzymes in a liquid form, they freeze-dried them to create a powdered, high-concentration cementation agent.

Monday, February 19, 2024

Researcher receives Naval Research Laboratory grant to develop more sophisticated sensor array

From left to right, engineering faculty researchers Dongfang Liu, Xudong Zheng, and Qian Xue display the seal whisker specimen they are modeling their advanced sensor array on for improving underwater detection and recognition.
Photo Credit: Travis Lacoss/RIT

Researchers at Rochester Institute of Technology are creating a novel sensor system based on the superior design and detection range found on harbor seal whiskers.

Xudong Zheng, an associate professor in RIT’s Kate Gleason College of Engineering, received a three-year, $746,000 award from the Naval Research Laboratory to build an autonomous underwater detection and tracking system with biological-level sensitivity, accuracy, and intelligence.

With demands for new sensor capabilities, increased sensitivity and accuracy could significantly advance underwater scientific explorations, such as tracking anomalies and seismic events in areas currently inaccessible or in improvements to robotic functions and military stealth missions.

“This is the next stage of development of stronger sensors,” said Zheng, whose team published findings in Frontiers in Robotics and AI. “Some early results of our computer simulations show that the sensor array combined with ‘smart’ algorithms could provide more smart perceptions and better reasoning regarding the signal pattern and how it corresponds to flow patterns.”

Methane Mystery

Maggie Capooci stands at the St. Jones Reserve where the team conducted its research.
Photo Credits: Evan Krape and Andrew Hill

Tidal salt marshes are fairly common across the Mid-Atlantic. These coastal ecosystems provide habitat for plants, birds and fish. Existing at the intersection of land and sea, tidal salt marshes act as armor against hurricanes and shoreline erosion.

Tidal salt marshes are also a powerful tool to combat climate change, said Rodrigo Vargas, an ecosystem ecology and environmental change professor in the Department of Plant and Soil Sciences at the University of Delaware. These ecosystems absorb the greenhouse gas carbon dioxide from the atmosphere, and their soils act as a carbon vault. 

“These ecosystems are threatened across the world. They are disappearing because of different problems, such as land use change and sea level rise,” Vargas said. “But they store a lot of carbon. So, there is a big concern about what will happen to salt marshes now under climate change and what is going to happen with the carbon stored in these ecosystems.” 

If tidal salt marshes shrink or disappear because of climate change or how human activities have transformed natural landscapes, could all the carbon they have stored go back into the atmosphere and further contribute to the warming of the Earth? Vargas said this is an important question that scientists are working on.

Tidal salt marsh soils are great at storing carbon because they're often flooded and have salty water. These conditions lower oxygen levels and make it difficult for most microorganisms to consume the carbon in the soil. However, some microorganisms called methyl-methanogens can eat some of the carbon in the soil and produce methane under these conditions. That’s a far more powerful greenhouse gas with the ability to heat up the Earth more intensely than carbon dioxide. In some marshes, the amount of methane produced and emitted can offset the amount of carbon captured by the ecosystem in the growing season. 

Discovery about bacterial cell walls can lead to new antibiotics

Felipe Cava is Professor of Infection Biology, Department of Molecular Biology, Umeå University and affiliated group leader with the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR) and the Integrated Science Lab (Icelab) and SciLifeLab.
Photo Credit: 
Mattias Pettersson, simon ohman jonsson inhousebyran

Researchers at Umeå University in Sweden, led by Professor Felipe Cava, have identified a new family of enzymes that creates a unique type of cross-linking between the building blocks of bacterial cell walls. This discovery could help develop new antibiotics against infectious diseases.

Bacterial cell walls form mesh-like structures, shielding cells from rupturing under high internal pressure and safeguarding against external threats. The cell wall is comprised of sugar and amino acid molecules interconnected by various types of cross-links. These cross-links play a crucial role in providing strength and stability to the cell wall, while also enabling bacteria to adapt to diverse environments and stressors.

In a groundbreaking study recently published in the esteemed journal Nature Communications, researchers from Umeå University and international institutions have unveiled a novel family of enzymes responsible for generating a unique cross-linkage between L-alanine and meso-diaminopimelic acid. These amino acids are integral components of the peptide chains constituting the cell wall of numerous bacterial species. Termed LD1,3-transpeptidase, this enzyme has been identified across various groups of alpha and beta proteobacteria, including opportunistic pathogens such as Burkholderia and Achromobacter.

Astronomers identify record-breaking quasar

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. Using ESO’s Very Large Telescope (VLT) in Chile, this quasar has been found to be the most luminous object known in the Universe to date. The supermassive black hole, seen here pulling in surrounding matter, has a mass 17 billion times that of the Sun and is growing in mass by the equivalent of another Sun per day, making it the fastest-growing black hole ever known.
Illustration Credit: European Southern Observatory/M. Kornmesser

Using the European Southern Observatory’s (ESO) Very Large Telescope (VLT), astronomers have characterized a bright quasar, finding it to be not only the brightest of its kind, but also the most luminous object ever observed. Quasars are the bright cores of distant galaxies and they are powered by supermassive black holes. The black hole in this record-breaking quasar is growing in mass by the equivalent of one Sun per day, making it the fastest-growing black hole to date.

The black holes powering quasars collect matter from their surroundings in a process so energetic that it emits vast amounts of light. So much so that quasars are some of the brightest objects in our sky, meaning even distant ones are visible from Earth. As a general rule, the most luminous quasars indicate the fastest-growing supermassive black holes.

Oregon State study sheds light on links between cognitive and motor skill development in children with autism

Image Credit: Aedrian

A recent study by Oregon State University researchers highlighted the ways motor skills and cognitive skills develop in connection with each other in young children with autism, and found an opportunity for behavioral and physical therapists to work together to improve care.

“We know they’re highly linked, but we often talk about them in different domains,” said study co-author Megan MacDonald, head of the School of Exercise, Sport, and Health Science in OSU’s College of Health. “When we look at wraparound services and talk about academic, social, physical and cognitive services, there’s so much we could do together.”

When assessing, diagnosing and providing services for young children with autism, providers are often siloed from each other, MacDonald said. Occupational and physical therapists focus on fine and gross motor skills, while behavioral therapists focus on emotional regulation and executive function.

But in many situations, the two sides depend on each other, she said. Fine motor skills are closely linked to cognition, such as the combination of moves kids must remember and perform in the correct order to write their name. The gross motor skills used in a playground game of kickball work in tandem with the social and emotional skills used to interact with other students and work as a team.

Birds have been adapting to human activity for millennia

Coot nesting on bike on a lake in Copenhagen. Birds and humans also co-inhabited specific environments in our prehistory, new research shows.
Photo Credit: Lisa Yeomans

Roughly 14,500 to 10,500 years ago, in the transition from the last glacial period, humans harvesting vegetation from the wetlands of eastern Jordan created a habitat for birds that would otherwise have migrated, a new study reveals. It shows that human activity is not necessarily detrimental to biodiversity but may allow for species to co-inhabit specific environments, the researchers suggest.

The presence of humans is usually associated with negative effects on flora and fauna, and our species has demonstrably influenced biodiversity negatively in the course of history.

But in a new study published in the Journal of Archaeological Method and Theory, a team of researchers from the University of Copenhagen and the University of Turin have discovered that some human activities may have had an encouraging effect on biodiversity through modification of specific ecosystems.

Giant step forward to help treat chronic wounds that affect millions


A team of international scientists has developed a more effective treatment for chronic wounds that does not involve antibiotics or silver-based dressings, but an ionized gas called plasma.

The treatment involves boosting the plasma activation of hydrogel dressings with a unique mix of different chemical oxidants that decontaminate and help heal chronic wounds.

University of South Australia physicist Dr Endre Szili, who led the study published this week in Advanced Functional Materials, describes the new method as “a significant breakthrough” that could revolutionize the treatment of diabetic foot ulcers, internal wounds and potentially cancerous tumors.

“Antibiotics and silver dressings are commonly used to treat chronic wounds, but both have drawbacks,” Dr Szili says. “Growing resistance to antibiotics is a global challenge and there are also major concerns over silver-induced toxicity. In Europe, silver dressings are being phased out for this reason.”

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles