For years, niobium was considered an underperformer when it came to superconducting qubits. Now scientists supported by Q-NEXT have found a way to engineer a high-performing niobium-based qubit and so take advantage of niobium’s superior qualities.
When it comes to quantum technology, niobium is making a comeback.
For the past 15 years, niobium has been sitting on the bench after experiencing a few mediocre at-bats as a core qubit material.
Qubits are the fundamental components of quantum devices. One qubit type relies on superconductivity to process information.
Touted for its superior qualities as a superconductor, niobium was always a promising candidate for quantum technologies. But scientists found niobium difficult to engineer as a core qubit component, and so it was relegated to the second string on Team Superconducting Qubit.
Now, a group led by Stanford University’s David Schuster has demonstrated a way to create niobium-based qubits that rival the state-of-the-art for their class.