. Scientific Frontline

Monday, February 26, 2024

Resurrecting niobium for quantum science

The Josephson junction is the information-processing heart of the superconducting qubit. Pictured here is the niobium Josephson junction engineered by David Schuster of Stanford University and his team. Their junction design has resurrected niobium as a viable option as a core qubit material.
Image Credit: Alexander Anferov/the University of Chicago’s Pritzker Nanofabrication Facility.

For years, niobium was considered an underperformer when it came to superconducting qubits. Now scientists supported by Q-NEXT have found a way to engineer a high-performing niobium-based qubit and so take advantage of niobium’s superior qualities.

When it comes to quantum technology, niobium is making a comeback.

For the past 15 years, niobium has been sitting on the bench after experiencing a few mediocre at-bats as a core qubit material.

Qubits are the fundamental components of quantum devices. One qubit type relies on superconductivity to process information.

Touted for its superior qualities as a superconductor, niobium was always a promising candidate for quantum technologies. But scientists found niobium difficult to engineer as a core qubit component, and so it was relegated to the second string on Team Superconducting Qubit.

Now, a group led by Stanford University’s David Schuster has demonstrated a way to create niobium-based qubits that rival the state-of-the-art for their class.

Metal scar found on cannibal star

This artist’s impression shows the magnetic white dwarf WD 0816-310, where astronomers have found a scar imprinted on its surface as a result of having ingested planetary debris.  When objects like planets or asteroids approach the white dwarf they get disrupted, forming a debris disc around the dead star. Some of this material can be devoured by the dwarf, leaving traces of certain chemical elements on its surface.   Using ESO’s Very Large Telescope, astronomers found that the signature of these chemical elements changed periodically as the star rotated, as did the magnetic field. This indicates that the magnetic fields funneled these elements onto the star, concentrating them at the magnetic poles and forming the scar seen here.
Illustration Credit: ESO/L. Calçada

When a star like our Sun reaches the end of its life, it can ingest the surrounding planets and asteroids that were born with it. Now, using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) in Chile, researchers have found a unique signature of this process for the first time — a scar imprinted on the surface of a white dwarf star. The results are published today in The Astrophysical Journal Letters.

“It is well known that some white dwarfs — slowly cooling embers of stars like our Sun — are cannibalizing pieces of their planetary systems. Now we have discovered that the star’s magnetic field plays a key role in this process, resulting in a scar on the white dwarf’s surface,” says Stefano Bagnulo, an astronomer at Armagh Observatory and Planetarium in Northern Ireland, UK, and lead author of the study.

Study sheds light on how neurotransmitter receptors transport calcium, a process linked with origins of neurological disease

Illustration Credit: Courtesy of McGill University

A new study from a team of McGill University and Vanderbilt University researchers is shedding light on our understanding of the molecular origins of some forms of autism and intellectual disability.

For the first time, researchers were able to successfully capture atomic resolution images of the fast-moving ionotropic glutamate receptor (iGluR) as it transports calcium. iGluRs and their ability to transport calcium are vitally important for many brain functions such as vision or other information coming from sensory organs. Calcium also brings about changes in the signaling capacity of iGluRs and nerve connections which are a key cellular events that lead to our ability to learn new skills and form memories.

iGluRs are also key players in brain development and their dysfunction through genetic mutations has been shown to give rise to some forms of autism and intellectual disability. However, basic questions about how iGluRs trigger biochemical changes in the brain’s physiology by transporting calcium have remained poorly understood.

In the study, the researchers took millions of snapshots of the iGluR protein in the act of transporting calcium, and unexpectedly discovered a temporary pocket that traps calcium on the outside of the protein. With this information at hand, they then used high-resolution electrophysiological recordings to watch the protein in motion as it transported calcium into the nerve cell.

Scientists assemble a richer picture of the plight and resilience of the foothill yellow-legged frog

Foothill yellow-legged frogs live in the flowing water of rivers and streams, so are especially vulnerable when these shrink to isolated pools.
Photo Credit: Brome McCreary / USGS

Up to only a few inches in length, with a lemon-hued belly, the foothill yellow-legged frog may seem unassuming. But its range once stretched from central Oregon to Baja California. In 2023, it was listed under the federal Endangered Species Act. Its rapidly decreasing range is due in part to a fungal pathogen called Batrachochytrium dendrobatidis, or Bd, that has devastated amphibians around the world.

A team of researchers, including UC Santa Barbara’s Andrea Adams, has conducted the most comprehensive study to date of disease dynamics in foothill yellow-legged frogs. The team’s data — sourced from both wild frogs and specimens in museum collections — enabled them to track patterns of infection across a large geographic range. In a study published in Royal Society Open Science, the researchers reveal that drought, rising temperatures and the increasing conversion of land for agriculture appear to be the largest factors driving Bd infection in this species.

The researchers aimed to assemble as much data as they could, both in space and time. They surveyed in the creeks and rivers of California and Oregon, where they swabbed wild yellow-legged frogs for the presence of Bd. It also led them into fluorescent-lit museum collections to sample specimens from as far back as the 1890s.

Snake robot could save lives


A search and rescue operation after an earthquake is a complicated task. One thing is to retrieve the potential survivors safely from the rubble. Even more difficult is finding out where they are.

It is precisely this kind of work that, among other things, a snake robot equipped with sensors and cameras could help solve. Such one is currently being developed by researchers at the Faculty of Engineering at the University of Southern Denmark.

They have recently published an article about the project in the journal Device.

We have made a robot capable of rectilinear locomotion - that is, movement in a straight line - as observed in snakes, says PhD student Burcu Seyidoğlu.

Future applications include search and rescue operations, field inspection, and space exploration. Especially in scenarios requiring navigation through confined spaces where body flexion is not feasible.

Vanishing Forests and Suffering Children: The Hidden Toll of Deforestation in Cambodia


Deforestation is suspected to have adverse impacts on child health. Investigating this phenomenon in Cambodia, a recent study sheds light on the devastating impact of prenatal exposure to deforestation on child health in Cambodia. The study reveals that children born in areas with recent deforestation suffer from lower birth weights and stunted growth. Moreover, pregnant women exposed to deforestation are more likely to experience anemia. These findings underscore the urgent need for effective targeted policies.

Deforestation, a critical consequence of human activity, has garnered significant attention due to its impact on environmental sustainability, biodiversity and climate change. However, an equally pressing yet less explored aspect is the relationship between deforestation and human health, especially in impoverished regions. Scientists have increasingly recognized the detrimental effects of deforestation on various aspects of human health, particularly among children. Studies reveal that children residing in areas with high deforestation rates are at an elevated risk of malaria, respiratory illnesses, diarrheal diseases, and malnutrition. This is particularly alarming given that these regions are often home to the most economically disadvantaged populations, worsening existing health disparities.

A Novel Method for Easy and Quick Fabrication of Biomimetic Robots with Life-Like Movement


Ultraviolet-laser processing is a promising technique for developing intricate microstructures, enabling complex alignment of muscle cells, required for building life-like biohybrid actuators, as shown by Tokyo Tech researchers. Compared to traditional complex methods, this innovative technique enables easy and quick fabrication of microstructures with intricate patterns for achieving different muscle cell arrangements, paving the way for biohybrid actuators capable of complex, flexible movements.

Biomimetic robots, which mimic the movements and biological functions of living organisms, are a fascinating area of research that can not only lead to more efficient robots but also serve as a platform for understanding muscle biology. Among these, biohybrid actuators, made up of soft materials and muscular cells that can replicate the forces of actual muscles, have the potential to achieve life-like movements and functions, including self-healing, high efficiency, and high power-to-weight ratio, which have been difficult for traditional bulky robots that require heavy energy sources. One way to achieve these life-like movements is to arrange muscle cells in biohybrid actuators in an anisotropic manner. This involves aligning them in a specific pattern where they are oriented in different directions, like what is found in living organisms. While previous studies have reported biohybrid actuators with significant movement using this technique, they have mostly focused on anisotropically aligning muscle cells in a straight line, resulting in only simple motions, as opposed to the complex movement of native muscle tissues such as twisting, bending, and shrinking. Real muscle tissues have a complex arrangement of muscle cells, including curved and helical patterns.

Arterial Connections Improve Treatment Outcomes Following Stroke

Visualization of the blood vessels in the brain of a patient without early venous filling, meaning without excessive reperfusion of the brain area after removal of the blood clot in the blocked artery.
Image Credit: P. Thurner und Z. Kulcsar, USZ

Blood vessels that cross-connect adjacent arterial trees regulate blood flow to the brain in stroke patients. Researchers at the University of Zurich have now shown that these vessels prevent brain hemorrhage following treatment to remove blood clots. They play a crucial role in the recovery of stroke patients.

Ischemic strokes are a major health burden. They occur when a blood vessel that supplies the brain becomes blocked, impairing blood flow to the brain. As a result, brain tissue suffers from a lack of oxygen and nutrients, which causes symptoms such as paralysis, confusion, dizziness, headache, trouble speaking or even death.

Many stroke patients recover poorly despite timely treatment

To treat these symptoms and restore blood flow to the brain, the obstructed vessel needs to be “declogged”, or recanalized. Contemporary treatments to remove the clot include intravenous thrombolysis or mechanical thrombectomy using a catheter. However, even with timely clot removal, many stroke patients only recover poorly.

The research group of Susanne Wegener, professor at the University of Zurich (UZH) and senior leading physician at the Department of Neurology of the University Hospital Zurich (USZ), has now demonstrated that the outcome of stroke treatments depends on the collateral network. Collaterals are blood vessels that cross-connect adjacent arterial trees, providing potential detour networks in case of a vascular blockage. “These vascular bridges maintain cerebral autoregulation and allow for a slower, gradual reperfusion, which results in smaller infarcts,” says Wegener.

Sunday, February 25, 2024

Targeting inflammatory protein could help treat severe asthma

Image Credit: Copilot AI

Just weeks after news of a sharp national spike in asthma deaths – with South Australia recording the highest increase in a single year (88%) – scientists have revealed a promising new treatment for the chronic lung disease.

Australian researchers have found that a family of proinflammatory molecules called beta common cytokines control inflammation and scarring of the airways (fibrosis) in severe and steroid-resistant asthma.

They believe that a human therapeutic antibody called trabikihart could be the key to effectively blocking inflammation and scarring.

The findings, published in the Journal of Allergy and Clinical Immunology, are a result of a joint study led by researchers from the University of South Australia (UniSA) and the Royal Melbourne Institute of Technology (RMIT), in collaboration with researchers from CSL and SA Pathology.

Joint study leader Dr Damon Tumes, Head of the Allergy and Cancer Immunology Laboratory in the Centre for Cancer Biology*, says the findings are significant.

Study provides rare glimpse of the ringtail, an important but poorly understood predator

Ringtail
Photo Credit: Jonathan Armstrong, Oregon State University

Secretive species can pose special conservation challenges simply because they are so skilled at staying under the radar that researchers have uncovered comparatively little about their basic needs.

One such species is the ringtail, a relative of the raccoon that has cultural significance to many Indigenous peoples in North America.

A collaboration among scientists from Oregon State University, the Hoopa Valley Tribe, Penn State and Cal Poly Humboldt has shed new light on the cat-like animal known for its large eyes and fluffy, striped tail.

The nocturnal carnivore, known scientifically as Bassariscus astutus, usually weighs between 1 and 2 pounds and is around 24 inches long including its tail.

Ringtails use the cavities of living trees or standing dead ones, called snags, to rest, sleep, avoid bad weather, hide from predators and make dens to raise their young.

The research, conducted on the Hoopa Valley Reservation northeast of Eureka, California, found ringtails selected tree cavities in mature and older forests, as well as in younger forests with some older trees still present, rather than oak woodlands or other more open areas.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles