![]() |
Corbassière glacier at Grand Combin in the canton of Valais Photo Credit: Peter Meyer-Herzog |
As part of the Ice Memory initiative, PSI researchers, with colleagues from the University of Fribourg and Ca’ Foscari University of Venice as well as the Institute of Polar Sciences of the Italian National Research Council (CNR), analyzed ice cores drilled in 2018 and 2020 from the Corbassière glacier at Grand Combin in the canton of Valais. A comparison of the two sets of ice cores published in Nature Geoscience shows: Global warming has made at least this glacier unusable as a climate archive.
Reliable information about the past climate and air pollution can no longer be obtained from the Corbassière glacier in the Grand Combin massif, because alpine glacier melting is progressing more rapidly than previously assumed. This sobering conclusion was reached by researchers led by Margit Schwikowski, head of the Laboratory for Environmental Chemistry at PSI, and Carla Huber, PhD student and first author of the study, when they compared the signatures of particulate matter locked in the annual layers of the ice. Glaciers are invaluable for climate research. The climatic conditions and atmospheric compositions of past ages are preserved in their ice. Therefore, they can serve, in much the same way as tree rings and ocean sediments, as a so-called climate archive for research.
Normally, the amount of particle-bound trace substances in ice fluctuates with the seasons. SubstPeter Meyer-Herzogances such as ammonium, nitrate, and sulfate come from the air and are deposited on the glacier through snowfall: The concentrations are high in summer and low in winter, because lower amounts of polluted air can rise from the valley when the air is cold. The 2018 ice core, which was drilled from depths of up to 14 meters during a preliminary study and contains deposits dating back to 2011, shows these fluctuations as expected. But the core from 2020, from a depth of up to 18 metres – drilled under the leadership of PSI researcher Theo Jenk – shows those fluctuations only for the upper three or four annual layers. Deeper in the ice – that is, farther in the past – the curve indicating the concentration of trace substances becomes noticeably flatter, and the total amount is lower. Schwikowski’s team reports on this in the current issue of the journal Nature Geoscience.