. Scientific Frontline

Tuesday, March 19, 2024

Cells harvested from urine may have diagnostic potential for kidney disease, find scientists

Image Credit: AI generated / Gemini Advance

Genes expressed in human cells harvested from urine are remarkably similar to those of the kidney itself, suggesting they could be an important non-invasive source of information on the kidney.

The news offers hope that doctors may one day be able to investigate suspected kidney pathologies without carrying out invasive procedures such as biopsies, raising the tantalizing prospect of earlier and simpler disease detection.

The impact of late detection of kidney disease can be severe and can lead to serious and sometimes life-threatening complications.

The team led by University of Manchester scientists measured the levels of approximately 20,000 genes in each cellular sediment sample of urine using a technique called transcriptomics.

The British Heart Foundation-funded study benefited from access to the world's largest collection of human kidney samples collected after surgery or kidney biopsy conducted before transplantation, known as the Human Kidney Tissue Resource, at The University of Manchester.

They extracted both DNA and RNA from each sample and connected information from their analysis, together with data from previous large-scale analyses of blood pressure (called genome-wide association studies), using sophisticated computational methods.

Inflammatory bowel disease after a stem cell transplant

Additional genetic testing could make bone marrow donations even safer.
Image Credit: Gerd Altmann

A stem cell donation saves a leukemia sufferer’s life. Five years later, the patient develops a chronic inflammatory bowel disease that occurs very rarely following a transplant. Researchers from the University of Basel and University Hospital Basel have studied the case and are calling for more extensive genetic analyses in bone marrow donors.

In many forms of blood cancer, a transplant of blood stem cells is the only chance of a cure. This procedure involves first eliminating the patient’s degenerated blood stem cells and then building up their immune system again with stem cells from a donor.

So that the new immune system doesn’t turn against the recipient’s body, a series of tissue markers must match the recipient and donor. This criterion is investigated as standard. Now, a research team led by Professors Petr Hrúz from Clarunis (University Digestive Health Care Center Basel) and Mike Recher from the University of Basel and University Hospital Basel has shown that it would also be sensible to carry out a more extensive genetic analysis.

Writing in the Journal of Clinical Immunology, the team describes the case of a man who developed a chronic inflammatory bowel disease (Crohn’s disease) five years after receiving a blood stem cell transplant for leukemia. Genetic analysis revealed that a mutation had been transplanted along with the blood stem cells from the donor. This mutation affected the operation of a factor called TIM-3, a key regulator of the immune system. The donor, on the other hand, was and remains in apparently good health.

There are large accumulations of plastics in the ocean, even outside so-called garbage patch

Neuston net towed on the side of the German RV SONNE, collecting surface-floating plastic samples when crossing the North Pacific Ocean.
Photo Credit: Philipp Klöckner / UFZ

When plastic ends up in the ocean, it gradually weathers and disintegrates into small particles. If marine animals ingest these particles, their health can be severely affected. Large accumulations of plastic can therefore disrupt the biological balance of marine ecosystems. But which areas are particularly affected? In a recent study, a research team from the Helmholtz Centre for Environmental Research (UFZ), in collaboration with the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), has found large quantities of plastic waste and microplastics in a remote marine protected area in the Pacific Ocean. These quantities were similar to those found in one of the world’s largest known garbage patches. The researchers highlight that plastics are distributed much more widely than expected. The entire ocean ecosystem is threatened. They therefore call for the global emissions of plastics into the ocean to be stopped as quickly as possible. The study has been published in Environmental Science & Technology.

New research deepens our understanding of pescatarians

(L-R)
Postgraduate researcher Maja Cullen, teaching assistant and researcher Devon Docherty, and Dr Carol Jasper
Photo Credit: Courtesy of University of Stirling

New research has deepened our understanding of why pescatarians choose to eat fish but not the meat of land animals.

The perceived distance between marine life and participants in the study was a key factor, researchers in the University of Stirling’s Division of Psychology found.

The team, consisting of Maja Cullen, Devon Docherty and Dr Carol Jasper, used the construal-level theory of psychological distance to investigate further how this distance is created and how this might be experienced.

The theory argues that we interpret people, animals, objects or situations differently depending on how much we know about them.

Dr Carol Jasper, co-author of the study, said: “When we do not know much about someone or something we think of it in more abstract and general terms because we lack information.

“For our sample of pescatarians, this meant that they felt less emotionally connected to marine animals than they felt to land animals with whom we share some more obvious similarities.

A protein found in human sweat may protect against Lyme disease

Human sweat contains a protein that may protect against Lyme disease, according to a study from MIT and the University of Helsinki. About one-third of the population carries a genetic variant of this protein that is associated with Lyme disease in genome-wide association studies.
Photo Credit: Erik Karits

Lyme disease, a bacterial infection transmitted by ticks, affects nearly half a million people in the United States every year. In most cases, antibiotics effectively clear the infection, but for some patients, symptoms linger for months or years.

Researchers at MIT and the University of Helsinki have now discovered that human sweat contains a protein that can protect against Lyme disease. They also found that about one-third of the population carries a genetic variant of this protein that is associated with Lyme disease in genome-wide association studies.

It’s unknown exactly how the protein inhibits the growth of the bacteria that cause Lyme disease, but the researchers hope to harness the protein’s protective abilities to create skin creams that could help prevent the disease, or to treat infections that don’t respond to antibiotics.

“This protein may provide some protection from Lyme disease, and we think there are real implications here for a preventative and possibly a therapeutic based on this protein,” says Michal Caspi Tal, a principal research scientist in MIT’s Department of Biological Engineering and one of the senior authors of the new study.

Hanna Ollila, a senior researcher at the Institute for Molecular Medicine at the University of Helsinki and a researcher at the Broad Institute of MIT and Harvard, is also a senior author of the paper, which appears today in Nature Communications. The paper’s lead author is Satu Strausz, a postdoc at the Institute for Molecular Medicine at the University of Helsinki.

Fighting heart attack down to the smallest vessels

Graphical Abstract of drug infusion for MVO treatment via regular vs. balloon catheter.
Image Credit: © ARTORG Center

Researchers in Bern have co-developed and tested a new method to combat the blockage of tiny coronary arteries after a heart attack. The new approach, born from a cooperation of engineers, clinicians, and industry, offers a treatment option to prevent the death of heart tissue after a heart attack, responsible for poor long-term patient health.

In myocardial infarction (heart attack), the supply of the heart muscle with oxygen and nutrients is blocked by an obstruction of a major coronary artery. Even after recanalization of this artery via stent, secondary obstructions in the cardiac microcirculation (Microvascular Obstruction, MVO) occur in 40-60% of all patients. This can lead to the death of heart tissue, with a negative impact on the long-term cardiovascular health of patients. Around 200,000 people are affected by this in Switzerland every year.

Monday, March 18, 2024

UC Irvine-led research team discovers role of key enzymes that drive cancer mutations

“Both APOBEC3A and APOBEC3B were known to generate mutations in many kinds of tumors, but until now we did not know how to identify the specific type caused by each,” says the study’s corresponding author, Rémi Buisson (center), UCI assistant professor of biological chemistry. He’s flanked by postdoctoral fellow Pedro Ortega (left) and graduate student Ambrocio Sanchez, UCI researchers who developed a new method to characterize the particular kind of DNA modified by the enzymes.
Photo Credit: UCI School of Medicine

A research team led by the University of California, Irvine has discovered the key role that the APOBEC3A and APOBEC3B enzymes play in driving cancer mutations by modifying the DNA in tumor genomes, offering potential new targets for intervention strategies.

The study, published today online in the journal Nature Communications, describes how the researchers identified the process by which APOBEC3A and APOBEC3B detect specific DNA structures, resulting in mutations at distinct positions within the tumor genome.

“It’s critical to understand how cancer cells accumulate mutations leading to hot spots that contribute to disease progression, drug resistance and metastasis,” said corresponding author Rémi Buisson, UCI assistant professor of biological chemistry. “Both APOBEC3A and APOBEC3B were known to generate mutations in many kinds of tumors, but until now we did not know how to identify the specific type caused by each. This finding will allow us to develop novel therapies to suppress mutation formation by directly targeting each enzyme accordingly.”

Bridge in a box: Unlocking origami’s power to produce load-bearing structures

From left, Yi Zhu, a Research Fellow in Mechanical Engineering, and Evgueni Filipov, an associate professor in both Civil and Environmental Engineering and Mechanical Engineering, working in his lab in the George G. Brown Laboratories Building.
Image Credit: Brenda Ahearn/University of Michigan, College of Engineering, Communications and Marketing

For the first time, load-bearing structures like bridges and shelters can be made with origami modules—versatile components that can fold compactly and adapt into different shapes—University of Michigan engineers have demonstrated.

It’s an advance that could enable communities to quickly rebuild facilities and systems damaged or destroyed during natural disasters, or allow for construction in places that were previously considered impractical, including outer space. The technology could also be used for structures that need to be built and then disassembled quickly, such as concert venues and event stages.

“With both the adaptability and load-carrying capability, our system can build structures that can be used in modern construction,” said Evgueni Filipov, an associate professor of civil and environmental engineering and of mechanical engineering, and a corresponding author of the study in Nature Communications.

Principles of the origami art form allow for larger materials to be folded and collapsed into small spaces. And with modular building systems gaining wider acceptance, the applications for components that can be stored and transported with ease have grown.

New strategy to facilitate muscle regeneration after injury

From left to right, Ginés Viscor, Joan Ramon Torrella and Garoa Santocildes.
Photo Credit: Courtesy of University of Barcelona

Muscle injuries are common in the active population, and they cause the majority of player leaves in the world of sport. Depending on the severity, recovery of muscle function is quite slow and may require surgery, medication and rehabilitation. Now, a study led by the University of Barcelona reveals a strategy to improve and accelerate recovery from muscle injuries that has potential application in the sports and health sector in general.

This is the first study to provide scientific evidence for faster and more effective recovery from muscle injuries through intermittent exposure to low oxygen availability (hypoxia) in a low-barometric pressure (hypobaric) chamber that simulates high-altitude geographic conditions.

The new approach is important for the recovery of athletes — especially in the competitive elite — but also to mitigate the socio-economic impact of the loss of work productivity caused by these injuries on the active population.

The study, carried out with animal models, has been published in the Journal of Physiology. The authors of the study are the experts Garoa Santoildes, Teresa Pagès, Joan Ramon Torrella and Ginés Viscor, from the Department of Cell Biology, Physiology and Immunology of the UB’s Faculty of Biology.

All creatures great and small: Sequencing the blue whale and Etruscan shrew genomes

Prompts by Scientific Frontline
Image Credit: AI Generated by Copilot / Designer / DALL-E 3

The blue whale genome was published in the journal Molecular Biology and Evolution, and the Etruscan shrew genome was published in the journal Scientific Data.

Research models using animal cell cultures can help navigate big biological questions, but these tools are only useful when following the right map.

“The genome is a blueprint of an organism,” says Yury Bukhman, first author of the published research and a computational biologist in the Ron Stewart Computational Group at the Morgridge Institute, an independent research organization that works in affiliation with the University of Wisconsin–Madison in emerging fields such as regenerative biology, metabolism, virology and biomedical imaging. “In order to manipulate cell cultures or measure things like gene expression, you need to know the genome of the species — it makes more research possible.”

The Morgridge team’s interest in the blue whale and the Etruscan shrew began with research on the biological mechanisms behind the “developmental clock” from James Thomson, emeritus director of regenerative biology at Morgridge and longtime professor of cell and regenerative bBiology in the UW School of Medicine and Public Health.  It’s generally understood that larger organisms take longer to develop from a fertilized egg to a full-grown adult than smaller creatures, but the reason why remains unknown.

“It’s important just for fundamental biological knowledge from that perspective. How do you build such a large animal? How can it function?” says Bukhman.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles