. Scientific Frontline

Monday, April 1, 2024

Atmospheric Scientists Link Arctic Sea Loss Ice to Strong El Niño Events


El Niño, a climate pattern where warm waters in the eastern Pacific fuel hotter weather, is finally beginning to wane after bringing a long stretch of record heat and heavy precipitation across the world since last summer. 

A new study, published in Science Advances by researchers at the University at Albany and Nanjing University of Information Science and Technology in China, has found that these events, which typically occur once every few years, might become even stronger due to melting Arctic sea ice.

Using a combination of climate model simulations and observational data, the researchers found that the current interaction of Arctic sea ice with the atmosphere reduces the strength of El Niño events by up to 17 percent, compared to when the interaction is removed.

The amount of sea ice that survives the Arctic summer has declined 12.2 percent per decade since the late 1970s and projections show the region could experience its first ice-free summer by 2040. 

“Climate models are already projecting a strengthened El Niño in the upcoming decades due to global warming. Arctic sea ice is also projected to decline rapidly in the upcoming decades, said Aiguo Dai, a Distinguished Professor in the Department of Atmospheric and Environmental Sciences and study co-author. 

Chickadees are Memory Geniuses. Their Barcode-Like Neural Activity May Be to Thank.

Chickadee caching a seed overlaid with a neural ‘barcode’ activity
Image Credit: Columbia’s Zuckerman Institute

Black-capped chickadees have extraordinary memories that can recall the locations of thousands of morsels of food to help them survive the winter. Now scientists at Columbia's Zuckerman Institute have discovered how the chickadees can remember so many details: they memorize each food location using brain cell activity akin to a barcode. These new findings may shed light on how the brain creates memories for the events that make up our lives.

"We see the world through our memories of objects, places and people," said Dmitriy Aronov, PhD, a principal investigator at Columbia’s Zuckerman Institute and an assistant professor of neuroscience at Columbia’s Vagelos College of Physicians and Surgeons. "Memories entirely define the way we see and interact with the world. With this bird, we have a way to understand memory in an incredibly simplified way, and in understanding their memory, we will understand something about ourselves."

This barcode-like formatting of memory, revealed for the first time today in the journal Cell, may be a common tactic in animal brains, including those of humans. "There are many findings in humans that are totally consistent with a barcode mechanism," said postdoctoral research fellow Selmaan Chettih, PhD, the study's co-first author along with Emily Mackevicius, PhD.

‘Frankenstein design’ enables 3D printed neutron collimator

Images of the 3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined, which are clearly visible at right.
Photo Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The time-tested strategy of divide and conquer took on a new, high-tech meaning during neutron experiments by scientists at the Department of Energy’s Oak Ridge National Laboratory. They discovered that the problems they faced while attempting to 3D print a one-piece collimator could be solved by instead developing a “Frankenstein design” involving multiple body parts – and some rather obvious scars.

Collimators are important components used in neutron scattering. Similar to X-rays, neutrons are used to study energy and matter at the atomic scale. Neutron collimators can be thought of as funnels that help guide neutrons toward a detector after they interact with experimental sample materials. These funnels primarily serve to reduce the number of stray neutrons that interfere with data collection, for example, neutrons that scatter off sample holders, or from other apparatuses used in the experiment such as high-pressure cells. 

During this process, most of the unwanted neutrons, those scattering from features other than the sample, enter channels inside the collimators at odd angles and are absorbed by channel walls, also referred to as blades. The blades act like the gutters on a bowling lane, which capture bowling balls that are not headed toward the pins.

SwRI to build the spacecraft bus for in-space refueler servicer program

The spacecraft, called the Astroscale Prototype Servicer for Refueling (APS-R), will be able to refuel other vehicles while in geostationary orbit. Image Credit: Courtesy of Astroscale U.S.

Southwest Research Institute (SwRI) will build, integrate and test a small demonstration spacecraft as part of a $25.5 million Space Mobility and Logistics (SML) prototyping project funded by the U.S. Space Force and led by prime contractor Astroscale U.S. The spacecraft, called the Astroscale Prototype Servicer for Refueling (APS-R), will refuel other compatible vehicles while in geostationary orbit.

“Running low on fuel is a common issue for spacecraft in Earth orbit,” said SwRI Staff Engineer Steve Thompson, the SwRI project systems engineer. “When they have expended all of their fuel, their mission ends — even though the vehicle may be in otherwise excellent health. A refueling vehicle can extend those missions, and we can get additional lifetime out of spacecraft that are already in orbit.”

The APS-R will operate in geostationary orbit around the Earth, meaning it will follow a circular orbit in sync with the Earth’s rotational period of 24 hours. The spacecraft will carry hydrazine propellant from a depot, also in geostationary orbit, to the spacecraft in need of fuel. The APS-R can service any spacecraft fitted with a compatible refueling port.

Canada lynx historic range in US likely wider than previously thought

The lynx might do well in the future in parts of Utah, central Idaho, and the Yellowstone National Park region.
Photo Credit: Zdeněk Macháček

A broader past could mean a brighter future for Canada lynx in the U.S., according to recent research.

The study, published in the journal Biological Conservation, indicates that lynx might do well in the future in parts of Utah, central Idaho and the Yellowstone National Park region, even considering climate change and the lack of lynx in those areas now.

Using a model validated by historic records, researchers first found that in 1900, Canada lynx had more suitable habitat in the U.S. than the few northern corners of the country where they are found currently. The study showed the elusive big cat likely roamed over a larger area in the Pacific Northwest, Rocky Mountains, Great Lakes region and parts of New England.

“History matters even for wildlife,” said lead author Dan Thornton, a Washington State University wildlife ecologist. “As part of the criteria for species recovery, we have to understand their historic distribution. Otherwise, how can we help recover a species, if we don’t know what we’re recovering to?”

Having a more accurate picture of a species’ past can also help avoid an effect known as “shifting baseline syndrome,” Thornton added, which is a gradual change in what people accept as normal for the environment, or specifically in this case, a species’ habitat.

New Material Can Be Used as a Membrane in Nuclear Reactors

The development can be used to accumulate deuterium and tritium for reuse.
Photo Credit: Rodion Narudinov

The new proton conductor developed by Ural scientists can be used as a separation membrane for hydrogen isotopes. This will make it possible to extract deuterium and tritium from the gas mixture and then use them for their intended purpose - either to recycle or to use. The scientists' development can be used in nuclear power plants (NPPs) to improve the efficiency of chemical separation. The scientists have published detailed information about the new conductor and its benefits in Ceramics International.

"Our material can be used as a functional material in nuclear energy. The fact is that during the operation of a nuclear reactor, a radioactive isotope of hydrogen, tritium, is released, which needs to be properly utilized. Our material can act as a membrane capable of electrochemically pumping the tritium out of the supplied gas mixture. This makes it possible to use the tritium as a fuel for fusion reactors, depending on the task", explains George Starostin, Junior Researcher at the Hydrogen Energy Research Laboratory of UrFU.

A separation membrane has been created to separate individual components and, in the case of proton-conducting membranes, to separate hydrogen isotopes. According to the scientists, a membrane made of the created material will make it possible to optimize the separation process and obtain pure isotopes that can be used in thermonuclear reactions.

Sunday, March 31, 2024

Combining multiple meds into a single pill reduces cardiovascular deaths

Image Credit: Copilot Dall e-3 AI generated.

Taking a single pill that combines medications targeting cardiovascular disease-related conditions was shown long ago to lower the risk of death from such causes, including heart attacks and strokes. The concept of using such “polypills” to prevent and treat atherosclerotic cardiovascular disease was introduced nearly 25 years ago. Shortly thereafter, the strategy was the focus of a seminal modeling study that promoted polypills to reduce cardiovascular disease at the population level. Still, many years and a body of supportive research later, use of such pills remains low throughout the world.

Now, a new study from researchers at Washington University School of Medicine in St. Louis bolsters previous findings and provides additional evidence that polypills are beneficial in preventing heart attacks and strokes and reducing deaths among people with cardiovascular risk factors, including high blood pressure and high cholesterol. As a result of the study, the World Health Organization (WHO) has added such polypills to its most recent Model List of Essential Medicines. The list comprises medicines considered key to public health due to their importance in treating common diseases, as well as their safety, efficacy and cost-effectiveness.

Rice biologists uncover new species of tiger beetle: Eunota houstoniana

Eunota houstoniana, with male on left and female on right.
Photo Credit: Rice University

Rice University evolutionary biologist Scott Egan and his research team have unearthed a new species of tiger beetle, deemed Eunota houstoniana, honoring the Houston region where it predominantly resides.

The team employed cutting-edge genetic sequencing technology alongside traditional measurements of their physical appearance and geographic range data to redefine species boundaries within the Eunota circumpicta species complex. This approach, known as integrative taxonomy, allowed them to identify distinct biological entities previously overlooked.

The study is published online in Nature Scientific Reports.

“It is amazing that within the city limits of Houston, we still don’t know all the species of insects or plants we share our region with,” Egan said. “I’m always interested in learning more about the biodiversity of the Gulf Coast.”

The Eunota houstoniana was once considered synonymous with the more common Eunota circumpicta, but the team’s research revealed significant differences, emphasizing the need for a refined process to species delineation.

Eunota houstoniana exhibits distinct genetic and physical characteristics. It is slightly smaller in size, its metallic coloring is more subdued, and it has unique behavior and habitat preferences.

Scientists identify Achilles heel of lung cancer protein


Researchers have shown for the first time that a crucial interface in a protein that drives cancer growth could act as a target for more effective treatments.

The study, led by the Science and Technology Facilities Council (STFC) Central Laser Facility (CLF) with support from the Imaging Therapies and Cancer Group at King's, used advanced laser imaging techniques to identify structural details of a mutated protein which help it to evade drugs that target it.

The study was published in the journal Nature Communications and lays the groundwork for future research into more effective, long-lasting cancer therapies.

The Epidermal Growth Factor Receptor (EGFR) is a protein that sits on the surface of cells and receives molecular signals that tell the cell to grow and divide. In certain types of cancer, mutated EGFR stimulate uncontrolled growth, resulting in tumors.

Various cancer treatments block and inhibit mutant EGFR to prevent tumor formation, but these are limited as eventually cancerous cells commonly develop further EGFR mutations that are resistant to treatment.

Until now, how exactly these drug-resistant EGFR mutations drive tumor growth was not understood, hindering our ability to develop treatments that target them.

Saturday, March 30, 2024

Purdue researchers create biocompatible nanoparticles to enhance systemic delivery of cancer immunotherapy

Purdue University researchers are developing and validating patent-pending nanoparticles (left) to enhance immunotherapy effects against tumors. The nanoparticles are modified with adenosine triphosphate, or ATP, to recruit dendritic cells (right), which are immune cells that recognize tumor antigens and bring specialized immune cells to fight off tumors.
Image Credit: Yoon Yeo

Purdue University researchers are developing and validating patent-pending poly (lactic-co-glycolic acid), or PLGA, nanoparticles modified with adenosine triphosphate, or ATP, to enhance immunotherapy effects against malignant tumors.

The nanoparticles slowly release drugs that induce immunogenic cell death, or ICD, in tumors. ICD generates tumor antigens and other molecules to bring immune cells to a tumor’s microenvironment. The researchers have attached ATP to the nanoparticles, which also recruits immune cells to the tumor to initiate anti-tumor immune responses. 

Yoon Yeo leads a team of researchers from the College of Pharmacy, the Metabolite Profiling Facility in the Bindley Bioscience Center, and the Purdue Institute for Cancer Research to develop the nanoparticles. Yeo is the associate department head and Lillian Barboul Thomas Professor of Industrial and Molecular Pharmaceutics and Biomedical Engineering; she is also a member of the Purdue Institute for Drug Discovery and the Purdue Institute for Cancer Research.

The researchers validated their work using paclitaxel, a chemotherapy drug used to treat several types of cancers. They found that tumors grew slower in mice treated with paclitaxel enclosed within ATP-modified nanoparticles than in mice treated with paclitaxel in non-modified nanoparticles.

“When combined with an existing immunotherapy drug, the ATP-modified, paclitaxel-loaded nanoparticles eliminated tumors in mice and protected them from rechallenge with tumor cells,” Yeo said.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles