. Scientific Frontline

Tuesday, January 7, 2025

Quantum simulators: When nature reveals its natural laws

Photo Credit: © Oliver Diekmann/TU Wien

Quantum simulators are a completely new tool for research: quantum physics is studied by other kinds of quantum physics. Research teams from Innsbruck and Vienna are developing a new method that will allow this new technology to be reliably verified.

Quantum physics is a very diverse field: it describes particle collisions shortly after the Big Bang as well as electrons in solid materials or atoms far out in space. But not all quantum objects are equally easy to study. For some – such as the early universe – direct experiments are not possible at all. However, in many cases quantum simulators can be used instead: One quantum system (for example, a cloud of ultracold atoms) is studied in order to learn something about another system that looks physically very different, but still follows the same laws, i.e. adheres to the same mathematical equations.

It is often difficult to find out which equations determine a particular quantum system. Normally, one first has to make theoretical assumptions and then conduct experiments to check whether these assumptions prove correct. Strikingly, researchers at the University of Innsbruck, opens an external URL in a new window, the Institute of Quantum Optics and Quantum Information, opens an external URL in a new window (IQOQI) and TU Wien (Vienna) have now jointly achieved an important step in this field: they have developed a method that allows them to read directly from the experiment which physical theory effectively describes the behavior of the quantum system. This now allows for a new kind of quality control: it is possible to directly check whether the quantum simulator actually does what it is supposed to simulate. This should enable quantitative statements to be made about quantum systems that cannot be investigated directly.

Monday, January 6, 2025

Increased wildfire activity may be a feature of past periods of abrupt climate change, study finds


A new study investigating ancient methane trapped in Antarctic ice suggests that global increases in wildfire activity likely occurred during periods of abrupt climate change throughout the last Ice Age.

The study, just published in the journal Nature, reveals increased wildfire activity as a potential feature of these periods of abrupt climate change, which also saw significant shifts in tropical rainfall patterns and temperature fluctuations around the world.

“This study showed that the planet experienced these short, sudden episodes of burning, and they happened at the same time as these other big climate shifts,” said Edward Brook, a paleoclimatologist at Oregon State University and a co-author of the study. “This is something new in our data on past climate.”

The findings have implications for understanding modern abrupt climate change, said the study’s lead author, Ben Riddell-Young, who conducted the research as part of his doctoral studies in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

“This research shows that we may not be properly considering how wildfire activity might change as the climate warms and rainfall patterns shift,” said Riddell-Young, who is now a postdoctoral scholar at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado, Boulder.

New protective coating can improve battery performance

Mario El Kazzi and his team have developed a cathode surface coating that enables operating voltages of up to 4.8 volts.
Photo Credit: © Paul Scherrer Institute PSI/Mahir Dzambegovic

A research team at the Paul Scherrer Institute PSI has developed a new sustainable process that can be used to improve the electrochemical performance of lithium-ion batteries. Initial tests of high-voltage batteries modified in this way have been successful. This method could be used to make lithium-ion batteries, for example those for electric vehicles, significantly more efficient.

Lithium-ion batteries are considered a key technology for decarbonization. Therefore, researchers around the world are working to continuously improve their performance, for example by increasing their energy density. “One way to achieve this is to increase the operating voltage,” says Mario El Kazzi from the Center for Energy and Environmental Sciences at Paul Scherrer Institute PSI. "If the voltage increases, the energy density also increases.”

However, there is a problem: At operating voltages above 4.3 volts, strong chemical and electrochemical degradation processes take place at the transition between the cathode, the positive pole, and the electrolyte, the conductive medium. The surface of the cathode materials gets severely damaged by the release of oxygen, dissolution of transition metals, and structural reconstruction – which in turn results in a continuous increase in cell resistance and a decrease in capacity. This is why commercial battery cells, such as those used in electric cars, have so far only run at a maximum of 4.3 volts.

Membrane Anchor Suppresses Protein Aggregation

3 D reconstruction of a microscope image: red is the membrane and green clumped prion protein.
Image Credit: AG Tatzelt

Researchers have gained valuable insight into the development of prion diseases of the brain.

Protein aggregation is typical of various neurodegenerative diseases such as Alzheimer’s, Parkinson’s and prion diseases such as Creutzfeld-Jakob disease. A research team headed by Professor Jörg Tatzelt from the Department of Biochemistry of Neurodegenerative Diseases at Ruhr University Bochum, Germany, has now used new in vitro and cell culture models to show that a lipid anchor on the outer membrane of nerve cells inhibits the aggregation of the prion protein. “Understanding the mechanisms that cause the originally folded proteins to transform into pathogenic forms is of crucial importance for the development of therapeutic strategies,” says Jörg Tatzelt. The team published their findings in the journal Proceedings of the National Academy of Sciences.

Researchers discover how to mimic hibernation in non-hibernating animals

OHSU researcher Domenico Tupone, Ph.D., has discovered a method to control human body temperature, mimicking hibernation in non-hibernating animals. His research is focused on how controlled hypothermia may reduce tissue damage following a cardiac attack or stroke.
Photo Credit: OHSU/Christine Torres Hicks

In the same way a bear instinctively lowers its body temperature to survive the winter’s chill, scientists have discovered a groundbreaking method to control human body temperature —potentially saving lives in emergency situations.

Oregon Health & Science University researchers have identified a process that could one day help clinicians lower body temperature in people experiencing life-threatening events, such as heart attacks or strokes.

If applied in humans, who can’t naturally hibernate, the discovery could mimic the natural ability of certain animals to lower their body temperature during hibernation.

“The idea is to reduce the body temperature to a lower level so that tissues like the brain or heart don't need as much oxygen, allowing them to survive the ischemia [lack of oxygen to tissues] longer and improve the functional outcomes of strokes or heart attacks,” said Domenico Tupone, Ph.D., senior author of the study and research assistant professor of neurological surgery in the OHSU School of Medicine.

Tuesday, May 14, 2024

Temporarily Closed

Currently Closed Due to Funding Issues.
If you would like to be a sponsor contact us.
Donations also would help and can be placed on this page.

Tuesday, April 9, 2024

Tiny plastic particles are found everywhere

The researchers were out in the southern Arctic Ocean on the research vessel Polarstern and took water samples, which they analyzed for the smallest microplastic particles.
Photo Credit: Clara Leistenschneider, University of Basel

Microplastic particles can be found in the most remote ocean regions on earth. In Antarctica, pollution levels are even higher than previously assumed. This is one finding of a recent study involving researchers from the University of Basel.

It’s not the first study on microplastics in Antarctica that researchers from the University of Basel and the Alfred-Wegener Institute (AWI) have conducted. But analysis of the data from an expedition in spring 2021 shows that environmental pollution from these tiny plastic particles is a bigger problem in the remote Weddell Sea than was previously known.

The total of 17 seawater samples all indicated higher concentrations of microplastics than in previous studies. “The reason for this is the type of sampling we conducted,” says Clara Leistenschneider, doctoral candidate in the Department of Environmental Sciences at the University of Basel and lead author of the study.

The current study focused on particles measuring between 11 and 500 micrometers in size. The researchers collected them by pumping water into tanks, filtering it, and then analyzing it using infrared spectroscopy. Previous studies in the region had mostly collected microplastic particles out of the ocean using fine nets with a mesh size of around 300 micrometers. Smaller particles would simply pass through these plankton nets.

The results of the new study indicate that 98.3 percent of the plastic particles present in the water were smaller than 300 micrometers, meaning that they were not collected in previous samples. “Pollution in the Antarctic Ocean goes far beyond what was reported in past studies,” Leistenschneider notes. The study appears in the journal Science of the Total Environment.

Monday, April 8, 2024

Deep parts of Great Barrier Reef ‘insulated’ from global warming – for now

Mesophotic corals on the Great Barrier Reef.
Photo Credit Prof Peter Mumby
Some deeper areas of the Great Barrier Reef are insulated from harmful heatwaves – but that protection will be lost if global warming continues, according to new research.

High surface temperatures have caused mass “bleaching” of the Great Barrier Reef in five of the last eight years, with the latest happening now.

Climate change projections for coral reefs are usually based on sea surface temperatures, but this overlooks the fact that deeper water does not necessarily experience the same warming as that at the surface.

The new study – led by the universities of Exeter and Queensland – examined how changing temperatures will affect mesophotic corals (depth 30-50 meters).

It found that separation between warm buoyant surface water and cooler deeper water can insulate reefs from surface heatwaves, but this protection will be lost if global warming exceeds 3°C above pre-industrial levels.

The researchers say similar patterns could occur on other reefs worldwide, but local conditions affecting how the water moves and mixes will mean the degree to which deeper water coral refuges exist and remain insulated from surface heatwaves will vary.

“Coral reefs are the canary in the coalmine, warning us of the many species and ecosystems affected by climate change,” said Dr Jennifer McWhorter, who led the research during a QUEX PhD studentship at the universities of Exeter and Queensland.

Finding New Chemistry to Capture Double the Carbon

An established carbon capture solvent can form clusters that could significantly increase the amount of carbon dioxide stored. 
Credits: Photo by Andrea Starr; Composite Graphic by Cortland Johnson
Pacific Northwest National Laboratory

Finding ways to capture, store, and use carbon dioxide (CO2) remains an urgent global problem. As temperatures continue to rise, keeping CO2 from entering the atmosphere can help limit warming where carbon-based fuels are still needed.

Significant progress has been made in creating affordable, practical carbon capture technologies. Carbon-capturing liquids, referred to as solvents when they are present in abundance, can efficiently grab CO2 molecules from coal-fired power plants, paper mills, and other emission sources. However, these all work through the same fundamental chemistry. Or so researchers assumed.

In a new work published in Nature Chemistry, scientists were surprised to find that a familiar solvent is even more promising than originally anticipated. New details about the solvent’s underlying structure suggest that the liquid could hold twice as much CO2 as previously thought. The newly revealed structure could also hold the key to creating a suite of carbon-based materials that could help keep even more CO2 out of the atmosphere.

The Pacific Northwest National Laboratory (PNNL) team developed the solvent several years ago and has studied it in a variety of scenarios. The team has worked to dial down the costs of using the solvent and turn up its efficiency. Last year, they revealed the least costly carbon capture system to date. It was during this research that the team noticed something odd.

MIT engineers design flexible “skeletons” for soft, muscle-powered robots

MIT engineers have developed a new spring (shown in Petri dish) that maximizes the work of natural muscles. When living muscle tissue is attached to posts at the corners of the device, the muscle’s contractions pull on the spring, forming an effective, natural actuator. The spring can serve as a “skeleton” for future muscle-powered robots.
Photo Credit: Felice Frankel
(CC BY-NC-ND 4.0 DEED)

Our muscles are nature’s perfect actuators — devices that turn energy into motion. For their size, muscle fibers are more powerful and precise than most synthetic actuators. They can even heal from damage and grow stronger with exercise.

For these reasons, engineers are exploring ways to power robots with natural muscles. They’ve demonstrated a handful of “biohybrid” robots that use muscle-based actuators to power artificial skeletons that walk, swim, pump, and grip. But for every bot, there’s a very different build, and no general blueprint for how to get the most out of muscles for any given robot design.

Now, MIT engineers have developed a spring-like device that could be used as a basic skeleton-like module for almost any muscle-bound bot. The new spring, or “flexure,” is designed to get the most work out of any attached muscle tissues. Like a leg press that’s fit with just the right amount of weight, the device maximizes the amount of movement that a muscle can naturally produce.

The researchers found that when they fit a ring of muscle tissue onto the device, much like a rubber band stretched around two posts, the muscle pulled on the spring, reliably and repeatedly, and stretched it five times more, compared with other previous device designs.

The team sees the flexure design as a new building block that can be combined with other flexures to build any configuration of artificial skeletons. Engineers can then fit the skeletons with muscle tissues to power their movements.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles