. Scientific Frontline

Monday, January 27, 2025

Researchers detect that people with schizophrenia have an altered ability to visually perceive contrast

UB researchers Cristina de la Malla and Daniel Linares.
Photo Credit: Courtesy of University of Barcelona

According to a review of more than 600 studies, these patients would have difficulty in detecting differences in light intensity between adjacent areas, without which they cannot adequately see their surroundings and objects.

The article, published in the journal Schizophrenia Bulletin, is signed by researchers Daniel Linares and Cristina de la Malla, together with master’s student Aster Joostens, from the Vision and Control of Action Group of the Faculty of Psychology and the UB Institute of Neurosciences (UBneuro).

A key indicator of visual function

The symptoms of schizophrenia are characterized by alterations in thinking and behavior, such as loss of contact with reality, delusions or hallucinations, but there are also abnormalities in the perception of visual stimuli, such as deficits in the perception of color or contrast. Understanding these abnormalities may provide clues as to how information processing disturbances contribute to the characteristic symptoms of schizophrenia. “Contrast perception is one of the most fundamental abilities of vision, as without it, we cannot adequately perceive the environment and the objects in it, which can compromise everyday tasks such as moving through space, recognizing faces or reading”, explains the research team, part of the Department of Cognition, ​​​​​​​Development and Educational Psychology.

Sunday, January 26, 2025

Miyake Events: Unraveling the Mysteries of Cosmic Radiation Surges

Image Credit: Scientific Frontline

What if a solar storm a thousand times stronger than any recorded hit Earth today? Imagine a surge of energy from the cosmos so powerful that it leaves its mark not only on our atmosphere but also etched into the very rings of ancient trees. This is the captivating reality of a Miyake event, a cosmic radiation burst that has intrigued scientists since its discovery in 2012. Named after Japanese physicist Fusa Miyake, these events offer a unique window into the dynamic interplay between our planet and the universe, while simultaneously raising concerns about the potential impact such events could have on our technologically reliant world.

What are Miyake Events?

Miyake events are distinguished by a dramatic increase in the production of cosmogenic isotopes, particularly carbon-14, within Earth's atmosphere. This surge in carbon-14 is detectable in tree rings, ice cores, and other natural records like sediment layers and cave formations, providing a historical record of these events1. The leading hypothesis suggests that extreme solar events, such as powerful solar flares or coronal mass ejections (CMEs), are the primary trigger for these events. These solar eruptions unleash massive quantities of high-energy particles that interact with Earth's atmosphere, leading to the increased production of carbon-14 and other cosmogenic isotopes like beryllium-10 and chlorine-362. Interestingly, Miyake events are potentially linked to superflares observed on distant stars similar to our Sun, suggesting a broader astronomical context for these powerful phenomena.

SwRI-designed experiments corroborate theory about how Titan maintains its atmosphere

To understand the persistent thick atmosphere on Saturn's largest moon, SwRI worked with the Carnegie Institution for Science Laboratory to create conditions mimicking those at Titan's rocky core. These laboratory experiments heated and pressurized tubes of organics, producing nitrogen and methane, gases necessary to maintain Titan's atmosphere.
Photo Credit: Courtesy of SwRI

Southwest Research Institute partnered with the Carnegie Institution for Science to perform laboratory experiments to better understand how Saturn’s moon Titan can maintain its unique nitrogen-rich atmosphere. 

Titan is the second largest moon in our solar system and the only one that has a significant atmosphere. 

“While just 40% the diameter of the Earth, Titan has an atmosphere 1.5 times as dense as the Earth’s, even with a lower gravity,” said SwRI’s Dr. Kelly Miller, lead author of a paper about these findings published in the journal Geochimica et Cosmochimica Acta. “Walking on the surface of Titan would feel a bit like scuba diving.”

The origin, age, and evolution of this atmosphere, which is roughly 95% nitrogen and 5% methane, has puzzled scientists since it was discovered in 1944.

“The presence of methane is critical to the existence of Titan’s atmosphere,” Miller says. “The methane is removed by reactions caused by sunlight and would disappear in about 30 million years after which the atmosphere would freeze onto the surface. Scientists think an internal source must replenish the methane, or else the atmosphere has a geologically short lifetime.”

Saturday, January 25, 2025

Lavender oil for longer-lasting sodium-sulfur batteries

In the future, linalool, a main component of lavender, could help to make sodium-sulfur batteries more durable and efficient.
Photo Credit: Dan Meyers

Lavender oil could help solve a problem in the energy transition. A team from the Max Planck Institute of Colloids and Interfaces has created a material from linalool, the main component of lavender oil, and sulfur that could make sodium-sulfur batteries more durable and powerful. Such batteries could store electricity from renewable sources.

It is a crucial question in the energy transition: how can electricity from wind power and photovoltaics be stored when it is not needed? Large batteries are one option. And sulfur batteries, in particular sodium-sulfur batteries offer several advantages over lithium batteries as stationary storage units. The materials from which they are made are much more readily available than lithium and cobalt, two essential components of lithium-ion batteries. The mining of these two metals also often damages the environment and locally causes social and political upheaval. However, sodium-sulfur batteries can store less energy in relation to their weight than lithium batteries and are also not as durable. Lavender oil with its main component linalool could now help to extend the service life of sodium-sulfur-batteries, as a team from the Max Planck Institute of Colloids and Interfaces reports in the journal Small.  "It's fascinating to design future batteries with something that grows in our gardens," says Paolo Giusto, group leader at the Max Planck Institute of Colloids and Interfaces.

Drawing a Line from the Gut Microbiome to Inflammation and Depression

Morganella morganii bacteria on a plate.
Photo Credit: Ajay Kumar Chaurasiya
(CC BY-SA 4.0)

It’s become increasingly clear that the gut microbiome can affect human health, including mental health. Which bacterial species influence the development of disease and how they do so, however, is only just starting to be unraveled.

For instance, some studies have found compelling links between one species of gut bacteria, Morganella morganii, and major depressive disorder. But until now no one could tell whether this bacterium somehow helps drive the disorder, the disorder alters the microbiome, or something else is at play.

Harvard Medical School researchers have now pinpointed a biologic mechanism that strengthens the evidence that M. morganii influences brain health and provides a plausible explanation for how it does so.

The findings, published in the Journal of the American Chemical Society, implicate an inflammation-stimulating molecule and offer a new target that could be useful for diagnosing or treating certain cases of the disorder. They also provide a roadmap for probing how other members of the gut microbiome influence human health and behavior.

“There is a story out there linking the gut microbiome with depression, and this study takes it one step further, toward a real understanding of the molecular mechanisms behind the link,” said senior author Jon Clardy, the Christopher T. Walsh, PhD Professor of Biological Chemistry and Molecular Pharmacology in the Blavatnik Institute at HMS.

Powerful anticancer compound might also be the key to eradicating HIV

Study co-authors Jennifer Hamad and Owen McAteer prepare for a cellular assay, a lab technique used to study living cells. The assay will yield information about the location of EBC-46 compounds that have been introduced into cells in the lab.
Photo Credit: Paul Wender

A compound with the unpresuming designation of EBC-46 has made a splash in recent years for its cancer-fighting prowess. Now a new study led by Stanford researchers has revealed that EBC-46 also shows immense potential for eradicating human immunodeficiency virus (HIV) infections. 

Compared to similar-acting agents, EBC-46 excels at activating dormant cells where HIV is hiding, the study found. These “kicked” cells can then be targeted (“killed”) by immunotherapies to fully clear the insidious virus from the body. By pursuing this “kick and kill” strategy with EBC-46, researchers think achieving permanent elimination of HIV in patients—in other words, a cure—is possible.

"We’re pleased to report that EBC-46 performed extremely well in preclinical experiments as part of a ‘kick and kill’ therapeutic," said study senior author Paul Wender, the Bergstrom Professor of Chemistry at Stanford’s School of Humanities and Sciences. "While we still have a lot of work to do before treatments based on EBC-46 might reach the clinic, this study marks unprecedented progress toward the as-yet-unrealized goal of eradicating HIV.” 

Friday, January 24, 2025

OHSU researchers use AI machine learning to map hidden molecular interactions in bacteria

Andrew Emili, Ph.D., professor of systems biology and oncological sciences, works in his lab at OHSU. Emili is part of a multi-disciplinary research team that uncovered how small molecules within bacteria interact with proteins, revealing a network of molecular connections that could improve drug discovery and cancer research.
Photo Credit: OHSU/Christine Torres Hicks

A new study from Oregon Health & Science University has uncovered how small molecules within bacteria interact with proteins, revealing a network of molecular connections that could improve drug discovery and cancer research.

The work also highlights how methods and principles learned from bacterial model systems can be applied to human cells, providing insights into how diseases like cancer emerge and how they might be treated. The results are published today in the journal Cell.

The multi-disciplinary research team, led by Andrew Emili, Ph.D., professor of systems biology and oncological sciences in the OHSU School of Medicine and OHSU Knight Cancer Institute, alongside Dima Kozakov, Ph.D., professor at Stony Brook University, studied Escherichia coli, or E. coli, a simple model organism, to map how metabolites — small molecules essential for life — interact with key proteins such as enzymes and transcription factors. These interactions control important processes such as cell growth, division and gene expression, but how exactly they influence protein function is not always clear.

A new experimental system to bring quantum technologies closer to students

The expert Raúl Lahoz and a group of students with the new equipment for studying quantum physics.
 Photo Credit: Fundació Catalunya La Pedrera

The world of quantum physics is experiencing a second revolution, which will drive an exponential leap in the progress of computing, the internet, telecommunications, cybersecurity and biomedicine. Quantum technologies are attracting more and more students who want to learn about concepts from the subatomic world — such as quantum entanglement or quantum superposition — to explore the innovative potential of quantum science. In fact, understanding the non-intuitive nature of quantum technology concepts and recognizing their relevance to technological progress is one of the challenges of 2025, declared the International Year of Quantum Science and Technology by UNESCO.

Now, a team from the Faculty of Physics of the University of Barcelona has designed new experimental equipment that makes it possible for students to familiarize themselves with the more complex concepts of quantum physics. The configuration they present —versatile, cost-effective and with multiple ways of application in the classroom — is already operational in the Advanced Quantum Laboratory of the UB’s Faculty of Physics and could also be accessible in less specialized centers.

This innovation is presented in an article in the journal EPJ Quantum Technology, which results from a collaboration between professors Bruno Juliá, from the Department of Quantum Physics and Astrophysics and the UB Institute of Cosmos Sciences (ICCUB); Martí Duocastella, from the Department of Applied Physics and the UB Institute of Nanoscience and Nanotechnology (IN2UB), and José M. Gómez, from the Department of Electronic and Biomedical Engineering. It is based on the result of Raúl Lahoz’s master’s final project, with the participation of experts Lidia Lozano and Adrià Brú.

Child mortality has risen since pandemic, new study shows

Photo Credit: Josue Michel

While child deaths in England fell temporarily during the COVID-19 pandemic, they have now risen to new heights, a new study from researchers at the University of Bristol and based on unique National Child Mortality Database (NCMD) data has found.

The study, published in PLOS Medicine, has shown that children were less likely to die during the pandemic lockdown (April 2020–March 2021) than at any time before or since, with 377 fewer deaths than expected from the previous year.  

The number of deaths in the following year (2021-2022) was similar to before the pandemic, but in 2022−2023, there were 258 more deaths than expected from the pre-pandemic period. 

The aim of the research was to quantify the relative rate, and causes, of childhood deaths in England, before, during, and after national lockdowns for COVID-19 and its social changes.

The researchers identified all those children in England who died between April 2019 and March 2023 and calculated what the rate of death was for each year, for each group of children (e.g., infants or older children) and cause of death.

Thursday, January 23, 2025

Eight Psychiatric Disorders Share the Same Genetic Causes

Image Credit: Won Lab

Building off previous groundbreaking research, a new study identifies specific genetic variants that have significant impacts on brain development and are shared across eight different psychiatric disorders. Targeting these variants could pave the way for treatments that address multiple conditions at once.

Psychiatric disorders often overlap and can make diagnosis difficult. Depression and anxiety, for example, can coexist and share symptoms. Schizophrenia and anorexia nervosa. Autism and attention deficit/hyperactivity disorder, too. But, why?

Life experiences, environment, and genetics can all influence psychiatric disorders, but much of it comes down to variations in our genetics. Over the past few years, scientists in the field of psychiatric genetics have found that there are common genetic threads that may be linking and causing coexisting psychiatric disorders.

In 2019, researchers at the Psychiatric Genomics Consortium, Harvard University, and the UNC School of Medicine identified 136 “hot spots” within the genome that are associated with eight psychiatric disorders. Among them, 109 hot spots were shared among multiple disorders, or “pleiotropic”. However, it was not clear at the time how genetic variations within these hot spots differed from those that only have roles in only one disorder.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles