. Scientific Frontline

Monday, January 27, 2025

What drives mood swings in bipolar disorder? Study points to a second brain clock

Image Credit: Scientific Frontline

A brain rhythm working in tandem with the body’s natural sleep-wake cycle may explain why bipolar patients alternate between mania and depression, according to new research.

The McGill University-led study published in Science Advances marks a breakthrough in understanding what drives shifts between the two states, something that, according to lead author Kai-Florian Storch, is considered the “holy grail” of bipolar-disorder research.

“Our model offers the first universal mechanism for mood switching or cycling, which operates analogously to the sun and the moon driving spring tides at specific, recurring times,” said Storch, an Associate Professor in McGill’s Department of Psychiatry and a researcher at the Douglas Research Centre.

The findings suggest that regularly occurring mood switches in bipolar disorder patients are controlled by two “clocks”: the biological 24-hour clock, and a second clock that is driven by dopamine-producing neurons that typically influence alertness. A manic or depressed state may arise depending on how these two clocks, which run at different speeds, align at a given time.

A genome-wide atlas of cell morphology reveals gene functions

Human cells imaged using Cell Painting. Cell nuclei are shown in blue, actin filaments in yellow, the endoplasmic reticulum in magenta, golgi bodies in cyan, and mitochondria in green.
Image Credit: Maria Lozada, Neal Lab

Visualizing cells after editing specific genes can help scientists learn new details about the function of those genes. But using microscopy to do this at scale can be challenging, particularly when studying thousands of genes at a time.

Now, researchers at the Broad Institute of MIT and Harvard, along with collaborators at Calico Life Sciences, have developed an approach that brings the power of microscopy imaging to genome-scale CRISPR screens in a scalable way. 

PERISCOPE — which stands for perturbation effect readout in situ via single-cell optical phenotyping — combines two technologies developed by Broad scientists: Cell Painting, which can capture images and key measures of subcellular compartments at scale, and Optical Pooled Screening, which “barcodes” cells and uses CRISPR to systematically turn off individual genes to study their function in those cells. 

The new technique lets scientists study the effects of perturbing over 20,000 genes on hundreds of image-based cellular features. Generating data with this method is more than 10 times less expensive than comparable high-dimensional approaches such as high-throughput single-cell RNA sequencing and can be adapted to study a wide variety of cell types. In Nature Methods, the researchers applied PERISCOPE to execute three whole-genome CRISPR screens to create an open-source atlas of cell morphology.

FAU Engineering Develops New Weapon against Harmful Algal Blooms

Photo Credit: Tom Fisk

As harmful algal blooms (HABs) continue to spread across the globe, urgent research is needed to address this growing threat. Studies in Italy, China, and the Atlantic basin have shown that many water bodies have high nitrogen-to-phosphorus ratios, making phosphorus a key factor that drives these blooms. This highlights the critical need for more effective phosphorus management strategies to curb the rise of HABs and protect our ecosystems.

Recently, there’s been a growing interest in finding useful ways to repurpose troublesome algal biomass, which could be turned into valuable products like bioplastics, biofertilizers, and biofuels. Researchers have already explored using algal biomass to create materials that can help clean up things such as heavy metals, rare earth metals, dyes, and even capture CO2 and harmful volatile organic compounds from the air.

However, few studies have looked into how algal biomass, especially cyanobacteria, also known as blue-green algae, can be used to create materials that remove phosphate from water.

Now, researchers from the College of Engineering and Computer Science at Florida Atlantic University, have filled that gap by transforming cyanobacterial biomass, which is typically a hazardous waste, into custom-made adsorbent materials that can pull harmful phosphorus out of water. A d sorbent materials are substances that can attract and hold molecules or particles such as gases, liquids, or dissolved solids on their surface. Unlike a b sorbent materials that soak up substances into their structure, a d sorbents capture molecules on the outside surface, forming a thin layer.

How mites have survived for millions of years

oribatid mite Platynothrus peltifer
Image Credit: Gemini (AI)

An international research team has discovered various mechanisms in asexual mites that generate genetic diversity and thus ensure survival

In collaboration with colleagues from international partner institutions, researchers at the University of Cologne have investigated the asexual reproduction of oribatid mites using genome sequencing techniques. They show that the key to evolution without sex in oribatid mites may lie in the independent evolution of their two chromosome copies – a phenomenon known as the ‘Meselson effect’. The research team identified various mechanisms that may contribute to the genetic diversity of the chromosome sets, potentially enabling the long-term persistence of the mite.

Like humans, oribatid mites possess two sets of chromosomes. However, the asexual oribatid mite Platynothrus peltifer reproduces parthenogenetically: Mothers produce daughters from unfertilized eggs, resulting in a population consisting entirely of females. Using single-individual sequencing, the researchers analysed the accumulated differences between the chromosome copies for the first time and evaluated their significance for the mite’s survival. The study titled ‘Chromosome-scale genome dynamics reveal signatures of independent haplotype evolution in the ancient asexual mite Platynothrus peltifer’, funded by the German Research Foundation (DFG), was published in Science Advances.

Nerve Stimulation: the Brain is Not Always Listening

A small device worn on the body can stimulate the nervous system via electrodes on the ear.
Image Credit: Courtesy of Technische Universität Wien

Nerve stimulation can help with various diseases. However, this only works well if the body's own rhythms are taken into account, says a study by TU Wien (Vienna).

It doesn't always have to be medication. Some health problems, from chronic pain and inflammation to neurological diseases, can also be treated by nerve stimulation, for example with the help of electrodes that are attached to the ear and activate the vagus nerve. This method is sometimes referred to as an ‘electric pill’.

However, vagus nerve stimulation does not always work the way it is supposed to. A study conducted by TU Wien (Vienna) in cooperation with the Vienna Private Clinic now shows how this can be improved: Experiments demonstrate that the effect is very good when the electrical stimulation is synchronized with the body's natural rhythms – the actual heartbeat and breathing.

Researchers detect that people with schizophrenia have an altered ability to visually perceive contrast

UB researchers Cristina de la Malla and Daniel Linares.
Photo Credit: Courtesy of University of Barcelona

According to a review of more than 600 studies, these patients would have difficulty in detecting differences in light intensity between adjacent areas, without which they cannot adequately see their surroundings and objects.

The article, published in the journal Schizophrenia Bulletin, is signed by researchers Daniel Linares and Cristina de la Malla, together with master’s student Aster Joostens, from the Vision and Control of Action Group of the Faculty of Psychology and the UB Institute of Neurosciences (UBneuro).

A key indicator of visual function

The symptoms of schizophrenia are characterized by alterations in thinking and behavior, such as loss of contact with reality, delusions or hallucinations, but there are also abnormalities in the perception of visual stimuli, such as deficits in the perception of color or contrast. Understanding these abnormalities may provide clues as to how information processing disturbances contribute to the characteristic symptoms of schizophrenia. “Contrast perception is one of the most fundamental abilities of vision, as without it, we cannot adequately perceive the environment and the objects in it, which can compromise everyday tasks such as moving through space, recognizing faces or reading”, explains the research team, part of the Department of Cognition, ​​​​​​​Development and Educational Psychology.

Sunday, January 26, 2025

Miyake Events: Unraveling the Mysteries of Cosmic Radiation Surges

Image Credit: Scientific Frontline

What if a solar storm a thousand times stronger than any recorded hit Earth today? Imagine a surge of energy from the cosmos so powerful that it leaves its mark not only on our atmosphere but also etched into the very rings of ancient trees. This is the captivating reality of a Miyake event, a cosmic radiation burst that has intrigued scientists since its discovery in 2012. Named after Japanese physicist Fusa Miyake, these events offer a unique window into the dynamic interplay between our planet and the universe, while simultaneously raising concerns about the potential impact such events could have on our technologically reliant world.

What are Miyake Events?

Miyake events are distinguished by a dramatic increase in the production of cosmogenic isotopes, particularly carbon-14, within Earth's atmosphere. This surge in carbon-14 is detectable in tree rings, ice cores, and other natural records like sediment layers and cave formations, providing a historical record of these events1. The leading hypothesis suggests that extreme solar events, such as powerful solar flares or coronal mass ejections (CMEs), are the primary trigger for these events. These solar eruptions unleash massive quantities of high-energy particles that interact with Earth's atmosphere, leading to the increased production of carbon-14 and other cosmogenic isotopes like beryllium-10 and chlorine-362. Interestingly, Miyake events are potentially linked to superflares observed on distant stars similar to our Sun, suggesting a broader astronomical context for these powerful phenomena.

SwRI-designed experiments corroborate theory about how Titan maintains its atmosphere

To understand the persistent thick atmosphere on Saturn's largest moon, SwRI worked with the Carnegie Institution for Science Laboratory to create conditions mimicking those at Titan's rocky core. These laboratory experiments heated and pressurized tubes of organics, producing nitrogen and methane, gases necessary to maintain Titan's atmosphere.
Photo Credit: Courtesy of SwRI

Southwest Research Institute partnered with the Carnegie Institution for Science to perform laboratory experiments to better understand how Saturn’s moon Titan can maintain its unique nitrogen-rich atmosphere. 

Titan is the second largest moon in our solar system and the only one that has a significant atmosphere. 

“While just 40% the diameter of the Earth, Titan has an atmosphere 1.5 times as dense as the Earth’s, even with a lower gravity,” said SwRI’s Dr. Kelly Miller, lead author of a paper about these findings published in the journal Geochimica et Cosmochimica Acta. “Walking on the surface of Titan would feel a bit like scuba diving.”

The origin, age, and evolution of this atmosphere, which is roughly 95% nitrogen and 5% methane, has puzzled scientists since it was discovered in 1944.

“The presence of methane is critical to the existence of Titan’s atmosphere,” Miller says. “The methane is removed by reactions caused by sunlight and would disappear in about 30 million years after which the atmosphere would freeze onto the surface. Scientists think an internal source must replenish the methane, or else the atmosphere has a geologically short lifetime.”

Saturday, January 25, 2025

Lavender oil for longer-lasting sodium-sulfur batteries

In the future, linalool, a main component of lavender, could help to make sodium-sulfur batteries more durable and efficient.
Photo Credit: Dan Meyers

Lavender oil could help solve a problem in the energy transition. A team from the Max Planck Institute of Colloids and Interfaces has created a material from linalool, the main component of lavender oil, and sulfur that could make sodium-sulfur batteries more durable and powerful. Such batteries could store electricity from renewable sources.

It is a crucial question in the energy transition: how can electricity from wind power and photovoltaics be stored when it is not needed? Large batteries are one option. And sulfur batteries, in particular sodium-sulfur batteries offer several advantages over lithium batteries as stationary storage units. The materials from which they are made are much more readily available than lithium and cobalt, two essential components of lithium-ion batteries. The mining of these two metals also often damages the environment and locally causes social and political upheaval. However, sodium-sulfur batteries can store less energy in relation to their weight than lithium batteries and are also not as durable. Lavender oil with its main component linalool could now help to extend the service life of sodium-sulfur-batteries, as a team from the Max Planck Institute of Colloids and Interfaces reports in the journal Small.  "It's fascinating to design future batteries with something that grows in our gardens," says Paolo Giusto, group leader at the Max Planck Institute of Colloids and Interfaces.

Drawing a Line from the Gut Microbiome to Inflammation and Depression

Morganella morganii bacteria on a plate.
Photo Credit: Ajay Kumar Chaurasiya
(CC BY-SA 4.0)

It’s become increasingly clear that the gut microbiome can affect human health, including mental health. Which bacterial species influence the development of disease and how they do so, however, is only just starting to be unraveled.

For instance, some studies have found compelling links between one species of gut bacteria, Morganella morganii, and major depressive disorder. But until now no one could tell whether this bacterium somehow helps drive the disorder, the disorder alters the microbiome, or something else is at play.

Harvard Medical School researchers have now pinpointed a biologic mechanism that strengthens the evidence that M. morganii influences brain health and provides a plausible explanation for how it does so.

The findings, published in the Journal of the American Chemical Society, implicate an inflammation-stimulating molecule and offer a new target that could be useful for diagnosing or treating certain cases of the disorder. They also provide a roadmap for probing how other members of the gut microbiome influence human health and behavior.

“There is a story out there linking the gut microbiome with depression, and this study takes it one step further, toward a real understanding of the molecular mechanisms behind the link,” said senior author Jon Clardy, the Christopher T. Walsh, PhD Professor of Biological Chemistry and Molecular Pharmacology in the Blavatnik Institute at HMS.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles