. Scientific Frontline

Monday, February 10, 2025

How Does the Brain Differentiate New Stimuli from Old Ones?

The illustration represents how sounds are encoded in the cerebral cortex, with neurons (at right) using "echoing" activity to track auditory stimuli to change and improve its predictions of the future.
Illustration Credit: Yuriy Shymkiv

The cerebral cortex is the largest part of a mammal’s brain, and by some measures the most important. In humans in particular, it’s where most things happen—like perception, thinking, memory storage, and decision-making. One current hypothesis suggests that the cortex’s primary role is to predict what’s going to happen in the future by identifying and encoding new information it receives from the outside world and comparing it with what was expected to occur.

A new study published today in the journal Neuron takes a big step toward proving that hypothesis. The paper’s lead author is Yuriy Shymkiv, a postdoctoral fellow in the lab of Professor Rafael Yuste.

“We found that the cortex acts like a memory machine, encoding new experiences, and predicting the very near future,” Shymkiv said.

Purdue biochemists discover self-repair function in key photosynthetic protein complex

Sujith Puthiyaveetil and Steve McKenzie look at a plant thylakoid in a lab at the biochemistry building at Purdue University.
Photo Credit: Purdue Agricultural Communications/Joshua Clark

Cyanobacteria began contributing oxygen to Earth’s mostly noxious atmosphere more than 2 billion years ago. The photosystem II protein complex now shared by various lineages of cyanobacteria, algae and land plants has served as a major site of oxygen production throughout the history of life on Earth ever since.

Ironically, receiving too much light can damage photosystem II and erode the photosynthetic efficiency of plants. Purdue University biochemists Steven McKenzie and Sujith Puthiyaveetil have gleaned new, long-hidden details about how photosystem II repairs itself. McKenzie and Puthiyaveetil’s findings have been published in the journal Plant Communications.

“The photosystem II splits water and extracts electrons and protons, leaving oxygen as a by-product. Photosystem II thereby powers life on Earth,” said Puthiyaveetil, associate professor of biochemistry. Even so, “it’s still fairly poorly understood how these huge protein complexes that use light energy to produce oxygen are able to be repaired and maintained so efficiently across different lineages of plants, algae and cyanobacteria.”

Rice scientists create tiny, water-based reactors for green chemistry

Researchers at Rice, including Ying Chen and Angel Martí, have developed a new method for performing chemical reactions using water instead of toxic solvents.
Photo Credit: Jeff Fitlow/Rice University.

Researchers at Rice University have developed a new method for performing chemical reactions using water instead of toxic solvents. The scientists created microscopic reactors capable of driving light-powered chemical processes by designing metal complex surfactants (MeCSs) that self-assemble into nanoscale spheres called micelles. This innovation could drastically reduce pollution in industries including pharmaceuticals and materials science, where harmful organic solvents are often necessary.

The new micellar technology represents a step forward in sustainable chemistry. These self-assembled micelles form in water, where their hydrophobic cores provide a unique environment for reactions, even with materials that are typically insoluble in water. The research team led by Angel Martí, professor and chair of chemistry at Rice, demonstrated that this system can efficiently perform photocatalytic reactions while eliminating the need for hazardous substances. The study was published in Chemical Science Feb. 10.

“Our findings show how powerful molecular design can be in tackling chemical sustainability challenges while maintaining high chemical performance,” Martí said. “We’ve created a tool that could transform how chemical reactions are performed, reducing environmental harm while increasing efficiency.”

Anomaly in the Deep Sea: Extraordinary Accumulation of Rare Atoms Could Improve Geological Dating Methods

Schematic depiction of production and incorporation of cosmogenic 10Be into ferromanganese crusts. A pronounced anomaly in 10Be concentration about 10 million years ago was discovered. This anomaly has great potential as time marker for the Late Miocene.
Image Credit: © HZDR / blrck.de

Beryllium-10, a rare radioactive isotope produced by cosmic rays in the atmosphere, provides valuable insights into the Earth's geological history. A research team from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in collaboration with the TUD Dresden University of Technology and the Australian National University (ANU), has discovered an unexpected accumulation of this isotope in samples taken from the Pacific seabed. Such an anomaly may be attributed to shifts in ocean currents or astrophysical events that occurred approximately 10 million years ago. The findings hold the potential to serve as a global time marker, representing a promising advancement in the dating of geological archives spanning millions of years. The team presents its results in the scientific journal Nature Communications.

Radionuclides are types of atomic nuclei (isotopes) that decay into other elements over time. They are used to date archaeological and geological samples, with radiocarbon dating being one of the most well-known methods. In principle, radiocarbon dating is based on the fact that living organisms continuously absorb the radioactive isotope carbon-14 (14C) during their lifetime. Once an organism dies, the absorption ceases, and the 14C content starts to decrease through radioactive decay with a half-life of approximately 5,700 years. By comparing the ratio of unstable 14C to stable carbon-12 (12C), researchers can determine the date of the organism's death.

Engineers Design New Autonomous System to Monitor Arctic Ice Melt

Photo Credit: Bernd Hildebrandt

The rapid melting and thinning of the Arctic ice have sparked serious concerns in the scientific community. In addition, sea ice thickness also has decreased, which makes ice cover more vulnerable to warming air and ocean temperature.

Understanding the ecological role of sea ice in the Arctic is crucial, particularly because the extent of sea ice in the region has been decreasing at an unprecedented rate. What would happen to the Arctic marine ecosystem if the sea ice melted even faster? To answer these questions, a long-term monitoring and data collection system is necessary in the harsh Arctic environment.

However, direct observation is challenging as satellite sensors have a coarse spatial resolution and cannot detect the fine fractal structure of the ice. Deploying human-crewed ships to the area is also difficult due to extreme weather conditions and obstacles posed by floating broken ice. Moreover, traditional ocean observation methods offer limited temporal and spatial coverage, while drones and autonomous underwater vehicles (AUVs) are hindered by energy constraints that restrict their research potential.

To overcome these challenges, researchers from the College of Engineering and Computer Science at Florida Atlantic University have proposed a design of an alternative, autonomous observational method, which holds promise for improving the autonomy of marine vehicles, aiding in maritime missions, and gaining a deeper understanding of how melting Arctic sea ice affects marine ecosystems.

UP-led astronomy research team explores formation of giant radio galaxies

An artistic representation of a what a giant cosmic jet the size of the distance between the Milky Way and Andromeda could look like
Illustration Credit: Courtesy of University of Pretoria

Enabled by supercomputing, University of Pretoria (UP) researchers have led an international team of astronomers that has provided deeper insight into the entire life cycle (birth, growth and death) of giant radio galaxies, which resemble “cosmic fountains” – jets of superheated gas that are ejected into near-empty space from their spinning supermassive black holes.

The findings of this breakthrough study were published in the journal Astronomy & Astrophysics, and challenge known theoretical models by explaining how extragalactic cosmic fountains grows to cover such colossal distances, raising new questions about the mechanisms behind these vast cosmic structures.

The research team – which was led by astrophysicist Dr Gourab Giri, who holds a postdoctoral fellowship from the South African Radio Astronomy Observatory at UP –  consisted of Associate Professor Kshitij Thorat and Extraordinary Professor Roger Deane of UP’s Faculty of Natural and Agricultural Sciences; Prof Joydeep Bagchi of Christ University in India; Prof DJ Sailkia of the Inter-University Centre for Astronomy and Astrophysics, also in India; and Dr Jacinta Delhaize of the University of Cape Town (UCT).

This study tackles a key question in modern astrophysics: how these structures, which are larger than galaxies and are made up of black hole jets, interact over cosmological timescales with their very thin, gaseous surroundings. 

Titanium-Based Prosthesis Alloy Scientists Have Tested Deformation

The co-authors of the development, as well as specialists from the UrFU Department of Heat Treatment and Metal Physics.
Photo Credit: Rodion Narudinov

Scientists from Ural Federal University, Institute of Strength Physics and Materials Science of the SB RAS and National Research Tomsk Polytechnic University have tested new titanium-based alloys, which have several advantages over traditional medical ones. Two types of titanium alloys — TNZ (including niobium and zirconium) and multi-element TNZTS (with niobium, zirconium, tantalum and tin) — were subjected to uniaxial pressing and multi-pass rolling. As a result of exposure, ultrafine-grained structures were formed in the alloys, which significantly increased the strength and hardness of the material. The results of the research were published in the Materials Letters Journal

Crystal structure of titan (α-phase) that formed after tests trial improved the strength characteristics of the TNZ-alloy, but at the same time reduced its plasticity and Young’s modulus, important characteristics of materials for prostheses. In case of elastic deformations of the bone—implant system, the load on the tissue depends on the ratio of the Young's modulus of the implant material and bone tissue. The lower this ratio, the lower the probability of necrosis and destruction of bone by implant pressure. Mechanical and biocompatibility increase the prospects for the introduction of materials developed by scientists in medicine, aerospace and defense industries.

Sunday, February 9, 2025

Lockheed Martin Matures Next Secure Communications Satellite Solution for U.S. Space Force with Major Design Milestone

MUOS Satellite From Lockheed Martin
Mobile User Objective System (MUOS) satellites, the fifth one of which is seen here in production at Lockheed Martin, are vital to providing secure communications for allied military forces around the world.
Photo Credit: Lockheed Martin.

Lockheed Martin has now proven the readiness of its satellite design in support of the U.S. Space Force (USSF) Space Systems Command’s upcoming Mobile User Objective System (MUOS) Service Life Extension (SLE) program through successful execution of an Early Design Review (EDR). Future MUOS satellites planned as part of the program will be critical in continuing to provide crystal-clear, secure communications to military forces on the move.

Lockheed Martin is one of two companies selected to develop future MUOS satellite concepts under Phase 1 of the program, centered on early design activities and risk reduction.

“In less than the initial one-year base period of performance, our team went above and beyond to deliver not only a successful early design review – but one so robust that it passed the rigorous standards of a more advanced design assessment,” said Maria Hartin-Swart, program management director for Lockheed Martin’s MUOS SLE development efforts.

Research in Fruit Flies Pinpoints Brain Pathways Involved in Alcohol-Induced Insomnia

Adrian Rothenfluh, PhD (left), and Maggie Chvilicek (right), authors on the recent study.
Photo Credit: Courtesy of University of Utah Health

Alcohol use disorder, which affects over 10% of Americans, can lead to persistent and serious insomnia. Difficulties falling asleep and staying asleep can last even after months of sobriety, increasing the risk of relapse. But treating withdrawal-related insomnia is difficult, partly because what’s going on in the brain in this condition remains largely mysterious.

 Now, research in fruit flies has identified specific brain signals and groups of brain cells that are involved in alcohol-induced insomnia. This work could ultimately lead to targeted treatments for alcohol-related sleep loss, helping people recover from alcohol use disorder.

  “The effects of alcohol on sleep seem to be localized to a particular cell type in the brain, which is not something that’s ever been shown before,” says Maggie Chvilicek, graduate researcher in neuroscience at the University of Utah and lead author on the study. She adds that these cells often do similar things in flies and humans. “The mechanism that we identified is something that very likely could also exist in a mammalian brain.”

Research Pinpoints Weakness in Lung Cancer’s Defenses

A microscope image of lung cancer cells (purple) containing the activated form of a metabolic enzyme called GUK1 (brown) that supports cancer growth.
Image Credit: Haigis lab

Lung cancer is a particularly challenging form of cancer. It often strikes unexpectedly and aggressively with little warning, and it can shapeshift in unpredictable ways to evade treatment.

While researchers have gleaned important insights into the basic biology of lung cancer, some of the disease’s molecular maneuvers have remained elusive.

Now, a team led by scientists at Harvard Medical School has made strides in understanding how a genetic flaw in some lung cancers alters cancer cell metabolism to fuel the disease.

Working with mouse models and human cancer cells, the researchers identified a metabolic enzyme called GUK1 in lung cancers harboring an alteration in the ALK gene. Their experiments showed that GUK1 plays an important role in boosting metabolism in tumor cells to help them grow.

The findings, reported in Cell and supported in part by federal funding, provide a clearer picture of how metabolism works in lung cancer.

The research could set the stage for developing therapies that target GUK1 to curb cancer growth, the team said.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles