. Scientific Frontline

Tuesday, September 28, 2021

Largest trial of antibiotic amoxicillin for treating chest infections in children finds little effect

 The largest randomized placebo-controlled trial of the antibiotic amoxicillin for treating chest infections in children - one of the most common acute illnesses treated in primary care in developed countries, has found it is little more effective at relieving symptoms than the use of no medication. The study, published in The Lancet and funded by the National Institute for Health Research (NIHR), was led by researchers from the University of Southampton and supported by centers at the Universities of Bristol, Oxford and Cardiff.

Although viruses are believed to cause many of these infections in children, whether or not antibiotics are beneficial in treatment of chest infections in children is still debated. While research so far in adults has shown that antibiotics are not effective for uncomplicated chest infections until now, there has not been the same level of research in children.

Researchers sought to test whether amoxicillin reduces the duration of moderately bad symptoms in children presenting with uncomplicated (non-pneumonic) lower respiratory tract chest infections in primary care. The trial recruited 432 children aged six months to twelve years-old with acute uncomplicated chest infections from primary care practices in England and Wales who were then randomly assigned to receive either amoxicillin or a placebo three times a day for seven days. Doctors or nurse-prescribers assessed symptoms at the start of the study and parents, with help from their children where possible, completed a daily symptom diary.

Researchers target key protein to fight inflammatory disease

 
Photo by Ivan Samkov from Pexels
For the first time, researchers have identified key molecules within the immune system that may help fight the inflammation that drives chronic diseases including cancers, sepsis and brain disease.

The University of Queensland collaborated with the Indian Institute of Technology, Kanpur on the study.

UQ Professor Trent Woodruff said the research investigated the part of the immune system responsible for the body’s natural response to pathogens and injury, known as the ‘complement system’.

“When activated inappropriately, the system drives inflammatory diseases such as sepsis, COVID-19, stroke, heart attacks, cancers and brain illnesses,” Professor Woodruff said.

A key protein, known as C5aR2, is a potential therapeutic target for treating chronic disease, due to its ability to moderate many immune and inflammatory processes.

“It’s been really challenging for researchers to understand how this protein is activated due to its unusual structure,” Professor Woodruff said.

“Instead of coupling with cell-signaling proteins, C5aR2 instead relies on signal regulating proteins known as β-arrestin proteins.”

“Our study investigated interactions between the C5aR2 and β-arrestin proteins, while screening for molecules that activated a connection between the two”, Professor Woodruff said.

“We found key and specific cell signals present when the C5aR2 was activated, which may act to boost the immune system’s response in inflammation.”

Co-investigator Professor Arun Shukla said the findings provided a framework for further exploration of β-arrestin proteins for their therapeutic modulation in disease.

“We are now working to progress these research findings into disease models and potentially enable scientists to design novel drug molecules targeting C5aR2 to treat inflammatory disorders”.

This study is the journal Molecular Cell, as part of an international collaboration with Professor Arun Shukla, based in India, and researchers Asuka Inoue, based in Japan, and Stéphane A. Laporte in Canada.

Source/Credit: University of Queensland

scn092821_01

Dinosaurs' ascent driven by volcanoes powering climate change

 The rise of dinosaurs coincided with environmental changes driven by major volcanic eruptions over 230 million years ago, a new study reveals.

The Late Triassic Carnian Pluvial Episode (CPE) saw an increase in global temperature and humidity - creating a major impact on the development of animal and plant life, coinciding with the establishment of modern conifers.

Researchers analyzed sediment and fossil plant records from a lake in northern China’s Jiyuan Basin, matching pulses of volcanic activity with significant environmental changes, including the CPE’s ‘mega monsoon’ climate, some 234 million to 232 million years ago.

The international research team, including experts at the University of Birmingham, today published their findings in Proceedings of the National Academy of Sciences (PNAS) – revealing four distinct episodes of volcanic activity during this time period, with the most likely source being major volcanic eruptions from the Wrangellia Large Igneous Province, the remnants of which are preserved in western North America.

Monday, September 27, 2021

Journey to Landsat 9

 

The first Landsat satellite launched in 1972. Since then, NASA has always kept a Landsat in orbit to collect images of the physical material covering our planet’s surface and changes to land usage. Those images allow researchers to monitor phenomena including agricultural productivity, forest extent and health, water quality, coral reef habitat health, and glacier dynamics.




Hyena scavenging provides public health and economic benefits to African cities

 


Hyenas are frequently vilified and often feared. Hemingway once described the hyena as a stinking, foul devourer of the dead, with jaws that crack the bones the lion leaves.

But a new study concludes that spotted hyena scavenging provides significant public health and economic benefits to the African cities they roam.

In a study conducted in and around the Ethiopian city of Mekelle, home to 310,000 people and 120,000 livestock animals, a University of Michigan conservation ecologist and two colleagues found that spotted hyenas annually remove 207 tons of animal carcass waste.

Mekelle is the capital of northern Ethiopia’s Tigray region. The carcasses of livestock animals that are slaughtered for food there, or that die naturally, are often dumped at the local landfill or on roadsides, where hyenas feed on the waste. The researchers wanted to know whether hyenas—by removing this waste from the environment—might also prevent pathogens from jumping into people and livestock.

They determined that hyena scavenging annually prevents five infections of anthrax and bovine tuberculosis in Mekelle residents and 140 infections in cattle, sheep and goats. This disease-control service potentially saves the city $52,000 annually in treatment costs and livestock losses avoided.

The study, published online Sept. 26 in the Journal of Applied Ecology, is the first to quantify the public health and economic benefits of scavenging by spotted hyenas.

Male giraffes are more socially connected than females

 

A team of researchers has constructed the social network of more than 1,000 Masai giraffes in Tanzania and found that, while female giraffes have closer “friends” than males, male giraffes have more “acquaintances.” Understanding the complex multilevel society could have important conservation implications for these endangered giraffes. 
Image Credit: Derek Lee

Although female giraffes have closer “friends” than male giraffes, male giraffes have more “acquaintances” than females, according to a new study by an international team that includes a Penn State biologist. The study demonstrates that giraffes form a complex multilevel society that is driven by differences in the social connections among individuals, which could have conservation implications for the endangered giraffes.

“The degree to which an animal is connected to others in its social network influences reproductive success and population ecology, spread of information, and even how diseases move through a population,” said Derek Lee, associate research professor at Penn State and an author of the paper. “Information about sociality therefore can provide important guidance for conservation.”

The research team examined social connectedness and social movements of endangered Masai giraffes in the Tarangire Ecosystem of northern Tanzania using data collected over 5 years. The work, led by Juan Lavista Ferres of the Microsoft AI for Good Research Lab, involved constructing the social network of more than 1,000 free-ranging giraffes. The team presents their results in a paper appearing Sept. 27 in the journal Animal Behaviour.

New membrane to make fresh water

 

Susan Rempe, right, a Sandia National Laboratories bioengineer, and Stephen Percival, a material scientist, examine their biologically inspired electrodialysis membrane for producing fresh water. By mimicking an algae protein, the membrane can remove salt from seawater and wastewater to make fresh water while using less electricity.
(Photo by Randy Montoya)

Scientists at Sandia National Laboratories and their collaborators have developed a new membrane, whose structure was inspired by a protein from algae, for electrodialysis that could be used to provide fresh water for farming and energy production.

The team shared their membrane design in a paper published recently in the scientific journal Soft Matter.

Electrodialysis uses electrical power to remove dissolved salts from water. Currently it is used to capture salt from seawater to produce table salt and remove salt from brackish water to make fresh water, but it could also be used to remove salt from wastewater to provide a new source of fresh water.

The researchers found that the addition of a common amino acid, called phenylalanine, to an electrodialysis membrane enabled it to better capture and remove positive ions, such as sodium.

“Adding phenylalanine to the electrodialysis membrane increased the selectivity for positive ions by a significant amount, to our pleasant surprise,” Susan Rempe, the lead bioengineer on the project, said.

Ensuring an adequate supply of fresh water is a national security problem, she said. Fresh water is essential for everything from drinking and farming to producing energy from nuclear-, coal- and natural-gas-based power plants.

COVID-19 has caused the biggest decrease in life expectancy

The COVID-19 pandemic triggered life expectancy losses not seen since World War II in Western Europe and exceeded those observed around the dissolution of the Eastern Bloc in central and Eastern European countries, according to research published today, led by scientists at Oxford’s Leverhulme Center for Demographic Science.

The research team assembled an unprecedented dataset on mortality from 29 countries, spanning most of Europe, the US and Chile – countries for which official death registrations for 2020 had been published. They found that 27 of the 29 countries saw reductions in life expectancy in 2020, and at a scale which wiped out years of progress on mortality, according to the paper published today in the International Journal of Epidemiology.

Women in 15 countries and men in 10 countries were found to have a lower expectancy at birth in 2020 than in 2015, a year in which life expectancy was already negatively affected by a significant flu season.

According to the study’s co-lead author Dr José Manuel Aburto, ‘For Western European countries such as Spain, England and Wales, Italy, Belgium, among others, the last time such large magnitudes of declines in life expectancy at birth were observed in a single year was during WW-II.’

A new phase of matter

 Researchers from the University of Cambridge used computer modelling to study potential new phases of matter known as prethermal discrete time crystals (DTCs). It was thought that the properties of prethermal DTCs were reliant on quantum physics: the strange laws ruling particles at the subatomic scale. However, the researchers found that a simpler approach, based on classical physics, can be used to understand these mysterious phenomena.

Understanding these new phases of matter is a step forward towards the control of complex many-body systems, a long-standing goal with various potential applications, such as simulations of complex quantum networks. The results are reported in two joint papers in Physical Review Letters and Physical Review B.

When we discover something new, whether it’s a planet, an animal, or a disease, we can learn more about it by looking at it more and more closely. Simpler theories are tried first, and if they don’t work, more complicated theories or methods are attempted.  

“This was what we thought was the case with prethermal DTCs,” said Andrea Pizzi, a PhD candidate in Cambridge’s Cavendish Laboratory, first author on both papers. “We thought they were fundamentally quantum phenomena, but it turns out a simpler classical approach let us learn more about them.”

DTCs are highly complex physical systems, and there is still much to learn about their unusual properties. Like how a standard space crystal breaks space-translational symmetry because its structure isn’t the same everywhere in space, DTCs break a distinct time-translational symmetry because, when ‘shaken’ periodically, their structure changes at every ‘push’.

Sunday, September 26, 2021

The VIPER

 


NASA's first lunar mobile robot, the Volatiles Investigating Polar Exploration Rover, or VIPER, will map the location and concentration of water ice and other frozen volatiles in an area west of Nobile crater, near the lunar South Pole. Understanding the distribution of water and other resources on the Moon is vital for sustaining human exploration there. Scheduled to be delivered in late 2023 as part of the Commercial Lunar Payload Services (CLPS) initiative, the rover will explore an area of about 36 square miles during its 100-day mission.

Source/Credit: NASA/SVS

sn092621_02

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles