. Scientific Frontline

Monday, November 29, 2021

New cancer therapy from Yibin Kang’s lab

Yibin Kang
Photo by Denise Applewhite, Office of Communications
Imagine you could cure cancer by targeting one tiny gene. Imagine that same gene occurred in every major cancer, including breast, prostate, lung, liver and colon. Imagine that the gene is not essential for healthy activity, so you could attack it with few or no negative side effects.

Cancer biologist Yibin Kang has spent more than 15 years investigating a little-known but deadly gene called MTDH, or metadherin, which enables cancer in two important ways — and which he can now disable, in mice and in human tissue, with a targeted experimental treatment that will be ready for human trials in a few years. His work appears in two papers in today’s issue of Nature Cancer (Paper One, Paper Two).

“You can’t find a drug target better than this: MTDH is important for most major human cancers, not important for normal cells, and it can be eliminated with no obvious side effects,” said Kang, Princeton’s Warner-Lambert/Parke-Davis Professor of Molecular Biology and one of the principal investigators of the Princeton Branch of the Ludwig Institute for Cancer Research.

“In the two papers we are publishing back-to-back today, we identify a compound, show it is effective against cancer, and show that it is very, very effective when combined with chemotherapy and immunotherapy,” said Kang. “Even though metastatic cancers are scary, by figuring out how they work — figuring out their dependency on certain key pathways like MTDH — we can attack them and make them susceptible to treatment.”

For years, Kang has focused on metastasis — the term for cancer’s ability to spread from one place to another in the body — because he knows that metastasis makes cancer deadly. While 99% of breast cancer patients survive five years after diagnosis, only 29% do if the cancer has metastasized, according to current numbers from the National Cancer Institute.

Sizing Up the Challenges in Extracting Lithium from Geothermal Brine

The hot brine that comes up from the subsurface as part of geothermal power production at the Salton Sea in California is a rich stew of minerals, including iron, magnesium, calcium, sodium, and lithium. Using various extraction techniques, lithium chloride can be extracted from the brine, then processed into other forms for battery production.
Credit: Jenny Nuss/Berkeley Lab

If you had a jar of marbles of many different colors but wanted only the green ones, how could you efficiently pick them out? What if it wasn’t marbles but a jar of glitter, and there was sand, glue, and mud mixed in? That begins to describe the complexity of the brine pumped out from beneath California’s Salton Sea as part of geothermal energy production.

For geothermal fields around the world, produced geothermal brine has been simply injected back underground, but now it’s become clear that the brines produced at the Salton Sea geothermal field contain an immense amount of lithium, a critical resource need for low-carbon transportation and energy storage. Demand for lithium is skyrocketing, as it is an essential ingredient in lithium-ion batteries. Currently there is very little lithium production in the U.S. and most lithium is imported; however, that may change in the near future.

Nibbling prehistoric herbivore sheds new light on Triassic diversity

Credit: Mark Witton
A Triassic herbivore, known for its supposed similarities to a modern-day ostrich, has been revealed to have entirely different approach to feeding from previously thought, according to research at the University of Birmingham.

The new discovery reveals a much broader diversity of herbivore behavior during the Triassic period than has been recognized to date.

Called Effigia, the animal was about the size of a gazelle and lived in North America around 205 million years ago. Its fossil remains were found in the Ghost Ranch Quarry in New Mexico in the 1940s, although the material was not formally described by paleontologists until 2006.

The remains had been relatively poorly preserved in the quarry and the skull, in particular, was quite badly deformed, making accurate reconstruction problematic. Early analysis of the specimen concluded that it belonged to the group of reptiles that includes crocodilians and birds and which started to flourish in the Triassic period.

Although more closely related to crocodilians, Effigia’s lightweight body, elongated neck, large eyes and beak shared many similarities with a modern-day ostrich, leading researchers to believe the animal fed by pecking plant material from the ground.

People want a better world after the COVID-19 pandemic but don’t believe it will really happen

Photo by Ron Lach from Pexels
People strongly favor a fairer and more sustainable way of life in the wake of the COVID-19 pandemic, despite not thinking it will actually materialize or that others share the same progressive wishes, according to new research which sheds intriguing light on what people have missed most and want for the future.

The international study, led by the University of Bristol, reflects people’s preferences in the United Kingdom and United States in the early as well as later stages of the pandemic, and shows striking commonality in their perspectives.

A “fairer future with grassroots leadership” was around four times more popular, favored by some 40% of participants, than a “return to normal”, which only garnered support from little more than 10%, in both the UK and US, when presented with various scenario options for the future.

However, the majority of respondents expected normality to resume regardless of their preferences, mistakenly believing their views were in the minority and that most wanted a return to the status quo.

Lead author Professor Stephan Lewandowsky, Chair in Cognitive Psychology at the University of Bristol, said: “The findings revealed people’s appetite for positive change, but also a strong sense of skepticism about whether this would actually materialize or that their views were in fact widely shared.

“This is important for everyone, including leaders and policy makers, to know so we can recognize and raise awareness of the common consensus contrary to popular belief. When people start to feel in the majority with their hopes, this instils greater belief and action towards achieving and making them real.”

The paper, entitled ‘Losses, hopes, and expectations for sustainable futures after COVID,’ and published in the journal Humanities & Social Sciences Communications, comprised two online questionnaires undertaken between May and July, 2020, and July 2021, involving nearly 1,000 (981) adults in total aged from 18 to 85 years old.

Monkeys go fishing to survive harsh Japanese winters

Snow monkey (Japanese macaque Macaca fuscata) 
Photo by Prof. Alexander Milner
Snow monkeys living in one of the world’s coldest regions survive by ‘going fishing’ – scooping live animals, including brown trout, out of Japanese rivers and eating them to stay alive, a new study reveals.

The snow monkey (Japanese macaque Macaca fuscata) is native to the main islands of Japan, except Hokkaido. The most northerly living non-human primate find that snow cover limits the availability of their preferred foods in the Kamikochi area of Chubu Sangaku National Park of the Japanese Alps.

With favorite foods difficult to find, the snow monkeys run low on energy and face death by starvation, but groundwater-fed streams flow during the winter with a constant water temperature of about 5 0C and are easily accessible for Japanese macaques to search for alternative live food.

Led by University of Birmingham experts, the international research team published its findings today in Scientific Reports - the first published scientific paper of Japanese macaques definitively eating freshwater animals in streams, including brown trout.

Previously, Japanese macaques have been shown to opportunistically capture marine fish, either when being dried or washed up on beaches, whilst closely-related species have been shown to feed on freshwater fish.

Researchers found brown trout in Japanese macaques’ fecal samples and believe that macaques capture brown trout in shallow pools along the stream margin.

Researchers developed mini-breast cancer as a new weapon against the most common type of breast cancer

Breast cancer tissue in a culture model in which hormone receptors disappear (left) and within the culture model developed in this study which maintains the hormone receptors (right). The hormone receptors are indicated in green.
Image: Pauliina Munne

Breast cancer is currently the most common form of cancer among the working age in Finland. Most breast cancers belong to a so-called hormone receptor-positive subtype. This means that there are hormone receptors on the cancer cells that receive hormones from the body and trigger a chain reaction that increases cancer growth.

These breast cancers can be effectively treated with hormone therapies. However, in 40 percent of the cases the effectiveness of the treatments decreases over time until it becomes difficult to control the cancer with medication. Additionally, it is problematic to study the effects of hormone therapies, the lack of treatment response, and new therapies that may be effective in unresponsive cancers as hormone receptors disappear completely from breast cancer cells under laboratory cell culture conditions.

Researchers at the University of Helsinki and Aalto University have found a way to keep the hormone receptors under laboratory conditions in their gel-grown mini-breast cancers. This discovery opens new avenues for the development of hormonal therapies, the study of individual drug responses, and the elucidation of the mechanisms of drug resistance.

Sunday, November 28, 2021

Morally divided societies more likely to elect extreme political leaders

Unorthodox leaders who shake up the political system are more likely to be elected if people believe their society is morally divided and breaking down, University of Queensland research has found.

Dr Charlie Crimston from UQ’s School of Psychology said people may vote outside their own political orientation if they felt the need to restore moral order.

“Our research is the first that provides evidence of the causal links between moral division and the desire to elect extreme leaders as a potential solution,” Dr Crimston said.

“The study found that if people believed there was a breakdown in societal fabric, they were more likely to elect an authoritarian figure to restore order, such as Donald Trump or Pauline Hanson.

“On the other hand, if there is a feeling of lack of leadership in society, voters may be drawn to a progressive leader to unify and lead the country in a new direction, such as Bernie Sanders or Alexandria Ocasio-Cortex.”

The paper examined core values of groups such as right and left wing voters in Australia, the US, and the UK and the perception that opposing groups have incompatible moral values.

Saturday, November 27, 2021

Destroying Black Holes


Watch as eight stars skirt a black hole 1 million times the mass of the Sun in these supercomputer simulations. As they approach, all are stretched and deformed by the black hole’s gravity. Some are completely pulled apart into a long stream of gas, a cataclysmic phenomenon called a tidal disruption event. Others are only partially disrupted, retaining some of their mass and returning to their normal shapes after their horrific encounters.

These simulations are the first to combine the physical effects of Einstein’s general theory of relativity with realistic stellar density models. The virtual stars range from about one-tenth to 10 times the Sun’s mass.

The division between stars that fully disrupt and those that endure isn’t simply related to mass. Instead, survival depends more on the star’s density.

Scientists investigated how other characteristics, such as different black hole masses and stellar close approaches, affect tidal disruption events. The results will help astronomers estimate how often full tidal disruptions occur in the universe and will aid them in building more accurate pictures of these calamitous cosmic occurrences.

Source/Credit: NASA's Goddard Space Flight Center/Taeho Ryu (MPA) 
Video Music: "Lava Flow Instrumental" from Universal Production Music
Final Editing and Conversion: Scientific Frontline
Full Credits included in video

Friday, November 26, 2021

In the quantum realm, not even time flows as you might expect

Artistic illustration of a gondolier trapped in a
quantum superposition of time flows.
Credit: Aloop Visual and Science, University of Vienna
A team of physicists at the Universities of Bristol, Vienna, the Balearic Islands and the Institute for Quantum Optics and Quantum Information (IQOQI-Vienna) has shown how quantum systems can simultaneously evolve along two opposite time arrows - both forward and backward in time.

The study, published in the latest issue of Communications Physics, necessitates a rethink of how the flow of time is understood and represented in contexts where quantum laws play a crucial role.

For centuries, philosophers and physicists have been pondering the existence of time. Yet, in the classical world, our experience seems to extinguish any doubt that time exists and goes on. Indeed, in nature, processes tend to evolve spontaneously from states with less disorder to states with more disorder and this propensity can be used to identify an arrow of time. In physics, this is described in terms of ‘entropy’, which is the physical quantity defining the amount of disorder in a system.

Dr Giulia Rubino from the University of Bristol’s Quantum Engineering Technology Labs (QET labs) and lead-author of the publication, said: “If a phenomenon produces a large amount of entropy, observing its time-reversal is so improbable as to become essentially impossible. However, when the entropy produced is small enough, there is a non-negligible probability of seeing the time-reversal of a phenomenon occur naturally.

“We can take the sequence of things we do in our morning routine as an example. If we were shown our toothpaste moving from the toothbrush back into its tube, we would be in no doubt it was a rewinded recording of our day. However, if we squeezed the tube gently so only a small part of the toothpaste came out, it would not be so unlikely to observe it re-entering the tube, sucked in by the tube’s decompression.”

The authors of the study, under the lead of Professor Caslav Brukner of the University of Vienna and the IQOQI-Vienna, applied this idea to the quantum realm, one of whose peculiarities is the principle of quantum superposition, according to which if two states of a quantum system are both possible, then that system can also be in both states at the same time.

Dr Rubino said: “Extending this principle to time’s arrows, it results that quantum systems evolving in one or the other temporal direction (the toothpaste coming out of or going back into the tube), can also find themselves evolving simultaneously along both temporal directions.

“Although this idea seems rather nonsensical when applied to our day-to-day experience, at its most fundamental level, the laws of the universe are based on quantum-mechanical principles. This begs the question of why we never encounter these superpositions of time flows in nature."

Dr Gonzalo Manzano, co-author from the University of the Balearic Islands, said: “In our work, we quantified the entropy produced by a system evolving in quantum superposition of processes with opposite time arrows. We found this most often results in projecting the system onto a well-defined time’s direction, corresponding to the most likely process of the two. And yet, when small amounts of entropy are involved (for instance, when there is so little toothpaste spilled that one could see it being reabsorbed into the tube), then one can physically observe the consequences of the system having evolved along the forward and backward temporal directions at the same time.”

Aside from the fundamental feature that time itself might not be well-defined, the work also has practical implications in quantum thermodynamics. Placing a quantum system in a superposition of alternative time’s arrows could offer advantages in the performance of thermal machines and refrigerators.

Dr Rubino said: “Although time is often treated as a continuously increasing parameter, our study shows the laws governing its flow in quantum mechanical contexts are much more complex. This may suggest that we need to rethink the way we represent this quantity in all those contexts where quantum laws play a crucial role.”

Source/Credit: University of Bristol

phy112621_01

Thursday, November 25, 2021

Extraordinary Roman mosaic and villa discovered beneath farmer's field in Rutland


Archaeologists have unearthed the first Roman mosaic of its kind in the UK. Today (Thursday), a rare Roman mosaic and surrounding villa complex have been protected as a Scheduled Monument by DCMS on the advice of Historic England. The decision follows archaeological work undertaken by a team from University of Leicester Archaeological Services (ULAS), working in partnership with Historic England and in liaison with Rutland County Council.

The initial discovery of the mosaic was made during the 2020 lockdown by Jim Irvine, son of landowner Brian Naylor, who contacted the archaeological team at Leicestershire County Council, heritage advisors to the local authority. Given the exceptional nature of this discovery, Historic England was able to secure funding for urgent archaeological investigations of the site by ULAS in August 2020. Further excavation involving staff and students from the University of Leicester’s School of Archaeology and Ancient History examined more of the site in September 2021. The remains of the mosaic measure 11m by almost 7m and depict part of the story of the Greek hero Achilles.

The artwork forms the floor of what’s thought to be a large dining or entertaining area. Mosaics were used in a variety of private and public buildings across the Roman Empire, and often featured famous figures from history and mythology. However, the Rutland mosaic is unique in the UK in that it features Achilles and his battle with Hector at the conclusion of the Trojan War and is one of only a handful of examples from across Europe.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles