. Scientific Frontline

Saturday, January 15, 2022

Citizen science helps nurture our health through nature

From lifting our moods, to boosting our immune systems, the intrinsic health benefits of being in nature are well known. But as urbanization continues to encroach on green spaces, finding ways to connect with natural environments is becoming more challenging.

Now, University of South Australia researchers are urging governments to consider nature-based citizen science as part of their public health policies in an effort improve the health and wellbeing of people living in urban areas.

By 2050, the United Nations estimates that 88 per cent of the population will be living in urban areas.

Given such mass urbanization, UniSA’s Professor Craig Williams says it’s more important than ever to maintain a connection with natural environments.

“Whether you’re watering the garden, taking a stroll around the block, or simply watching the world go by, getting out into nature is good for your health,” Prof Williams says.

“Natural environments can enhance human performance, improve success at work (or school) and are known to provide significant mental, emotional, and physical health benefits.

“Conversely, urbanization can negatively affect human health by increasing the prevalence of allergic, autoimmune, inflammatory, and infectious diseases, with some of these factors contributing to rise in cancers, depression and cardiovascular disease.

“As cities grow, fewer people have access to natural environments, which is part of the reason urban living can be bad for your health.

World's largest fish breeding area discovered in Antarctica

Fish nests in Weddell Sea 
Photo: PS124, AWI OFOBS team
Near the Filchner Ice Shelf in the south of the Antarctic Weddell Sea, a research team has found the world's largest fish breeding area known to date. A towed camera system photographed and filmed thousands of nests of icefish of the species Neopagetopsis ionah on the seabed. The density of the nests and the size of the entire breeding area suggest a total number of about 60 million icefish breeding at the time of observation. These findings provide support for the establishment of a Marine Protected Area in the Atlantic sector of the Southern Ocean. A team led by Autun Purser from the Alfred Wegener Institute publish their results in the current issue of the scientific journal Current Biology.

The joy was great when, in February 2021, researchers viewed numerous fish nests on the monitors aboard the German research vessel Polarstern, which their towed camera system transmitted live to the vessel from the seabed, 535 to 420 meters below the ship, from the seafloor of the Antarctic Weddell Sea. The longer the mission lasted, the more the excitement grew, finally ending in disbelief: nest followed nest, with later precise evaluation showing that there were on average one breeding site per three square meters, with the team even finding a maximum of one to two active nests per square meter.

The mapping of the area suggests a total extent of 240 square kilometers, which is roughly the size of the island of Malta. Extrapolated to this area size, the total number of fish nests was estimated to be about 60 million. "The idea that such a huge breeding area of icefish in the Weddell Sea was previously undiscovered is totally fascinating," says Autun Purser, deep-sea biologist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and lead author of the current publication. After all, the Alfred Wegener Institute has been exploring the area with its icebreaker Polarstern since the early 1980s. So far, only individual Neopagetopsis ionah or small clusters of nests have been detected here.

Using Only 100 Atoms, Electric Fields Can Be Detected and Changed

A conceptual drawing of the new molecular device. for experiments outside the human body (in vitro), the device would nest on the cell’s membrane: A “reporter” molecule would detect the local electric field when activated by red light; An attached “modifier” molecule would alter that electric field when activated by blue light.
Illustration by katya kadyshevskaya

Bioelectricity, the current that flows between our cells, is fundamental to our ability to think and talk and walk.

In addition, there is a growing body of evidence that recording and altering the bioelectric fields of cells and tissue plays a vital role in wound healing and even potentially fighting diseases like cancer and heart disease.

Now, for the first time, researchers at the USC Viterbi School of Engineering have created a molecular device that can do both: record and manipulate its surrounding bioelectric field.

The triangle-shaped device is made of two small, connected molecules — much smaller than a virus and similar to the diameter of a DNA strand.

It’s a completely new material for “reading and writing” the electric field without damaging nearby cells and tissue. Each of the two molecules, linked by a short chain of carbon atoms, has its own separate function: one molecule acts as a “sensor” or detector that measures the local electric field when triggered by red light; a second molecule, “the modifier,” generates additional electrons when exposed to blue light. Notably, each function is independently controlled by different wavelengths of light.

Though not intended for use in humans, the organic device would sit partially inside and outside the cell’s membrane for in vitro experiments.

Researchers discover a new approach to breaking bacterial antibiotic resistance and rescue frontline drug treatments

Dr Erin Brazel from the University of Adelaide’s
Research Center for Infectious Diseases.
Researchers at the Peter Doherty Institute for Infection and Immunity (Doherty Institute), The University of Queensland, Griffith University, The University of Adelaide, and St Jude Children’s Research Hospital (USA), have unlocked a key to making existing frontline antibiotics work again against the deadly bacteria that cause pneumonia.

In a world first, this international team discovered how to repurpose a molecule called PBT2 – originally developed as a potential treatment for disorders such as Alzheimer's, Parkinson’s and Huntington’s diseases – to break bacterial resistance to commonly used frontline antibiotics.

Led by University of Melbourne’s Professor Christopher McDevitt, a laboratory head at the Doherty Institute, this discovery may soon see the comeback of readily available and cheap antibiotics, such as penicillin and ampicillin, as effective weapons in the fight against the rapidly rising threat of antibiotic resistance.

In a paper published today in Cell Reports Professor McDevitt and his collaborators described how they discovered a way to break bacterial drug resistance and then developed a therapeutic approach to rescue the use of the antibiotic ampicillin to treat drug-resistant bacterial pneumonia caused by Streptococcus pneumoniae in a mouse model of infection.

This may become a game-changer against the global health threat of antibiotic resistance. Last year the World Health Organization (WHO) described antibiotic resistance as one of the greatest threats to global health, food security, and development. Rising numbers of bacterial infections – such as pneumonia, tuberculosis, gonorrhoea, and salmonellosis – are becoming harder to treat as the antibiotics used against them are becoming less effective. With few new drugs on the horizon, it is predicted that by 2050 antibiotic resistant infections will cause more deaths than cancers and cardiac disease, accounting for more than 10 million deaths per year.

Friday, January 14, 2022

Risky food-finding strategy could be the key to human success

A group of Hadza women share a meal of roasted tubers. Food sharing allows them to spend more energy to find food, knowing they won’t starve if they return to camp empty-handed. (
Credit: Herman Pontzer)

It’s a cold and rainy Sunday afternoon: would you rather be running after tasteless wild berries, or curled up on your couch with fuzzy socks and a good book?

You might not have had that choice if our ancestors had not taken a big gamble with their food.

A new study published in Science shows that early human foragers and farmers adopted an inefficient high-risk, high-reward strategy to find food. They spent more energy in pursuit of food than their great ape cousins, but brought home much more calorie-rich meals that could be shared with the rest of their group. This strategy allowed some to rest or tackle other tasks while food was being acquired.

“Hunting and gathering is risky and inefficient, but the rate of return is enormous,” said study co-leader, Herman Pontzer, an associate professor of Evolutionary Anthropology at Duke University. “We can share our food, and because we got so many calories before noon, we can hang out around each other in this new space, a free-time space.”

Humans spend a lot more energy than great apes. We have big brains that eat up a lot of calories, we live a long time, we can have long pregnancies that produce big babies, and these babies rely on adults for a long time.

A spray to protect against lung damage from Covid-19

Prof. Stefan Engelhardt and startup rnatics develop an RNA-based drug that can prevent inflammatory lung conditions associated with Covid-19.
Image Credit: Andreas Heddergott / TUM

rnatics, a startup at the Technical University of Munich (TUM), has created an RNA-based drug to prevent lung damage from infections as seen in serious Covid-19 cases. The Federal Ministry of Education and Research (BMBF) is providing 7 million euros in funding to support the development of the drug. The team is using a substance that inhibits the inflammation-promoting microRNA. The therapy is expected to be efficacious in current and future mutations of SARS-CoV2.

Covid-19 infections can lead to serious inflammations of the lung and the formation of scar tissue (fibrosis). This can have a long-term impact on lung function and is one of the causes of “long covid”. A team working with Stefan Engelhardt, Professor of Pharmacology and Toxicology at TUM has developed a new RNA-based drug that can prevent these inflammatory lung conditions. When administered via the respiratory passages, it quickly targets immune cells in the alveoli (tiny air sacs in the lungs) and inhibits a microRNA molecule found in these cells.

In Covid patients, misguided immune cells called macrophages play a substantial role in severe inflammatory infections and lung damage. However, when the new drug blocked the microRNA molecule in macrophages in mice, there was a significant reduction in inflammation and lung damage and a considerable improvement in lung function. Stefan Engelhardt is confident that serious infections and thus the kind of lung damage associated with long covid can be prevented in human patients receiving the drug through an inhaler.

Earth’s interior is cooling faster than expected

The Earth's core gives off heat to the mantle (or­ange to dark red),
which con­trib­utes to the slow cool­ing of the Earth
Source: ETH Zurich
Re­search­ers at ETH Zurich have demon­strated in the lab how well a min­eral com­mon at the bound­ary between the Earth’s core and mantle con­ducts heat. This leads them to sus­pect that the Earth’s heat may dis­sip­ate sooner than pre­vi­ously thought.

The evol­u­tion of our Earth is the story of its cool­ing: 4.5 bil­lion years ago, ex­treme tem­per­at­ures pre­vailed on the sur­face of the young Earth, and it was covered by a deep ocean of magma. Over mil­lions of years, the planet’s sur­face cooled to form a brittle crust. How­ever, the enorm­ous thermal en­ergy em­an­at­ing from the Earth’s in­terior set dy­namic pro­cesses in mo­tion, such as mantle con­vec­tion, plate tec­ton­ics and vol­can­ism.

Still un­answered, though, are the ques­tions of how fast the Earth cooled and how long it might take for this on­go­ing cool­ing to bring the afore­men­tioned heat-​driven pro­cesses to a halt.

One pos­sible an­swer may lie in the thermal con­duct­iv­ity of the min­er­als that form the bound­ary between the Earth’s core and mantle.

This bound­ary layer is rel­ev­ant be­cause it is here that the vis­cous rock of the Earth’s mantle is in dir­ect con­tact with the hot iron-​nickel melt of the planet’s outer core. The tem­per­at­ure gradi­ent between the two lay­ers is very steep, so there is po­ten­tially a lot of heat flow­ing here. The bound­ary layer is formed mainly of the min­eral bridg­man­ite. How­ever, re­search­ers have a hard time es­tim­at­ing how much heat this min­eral con­ducts from the Earth’s core to the mantle be­cause ex­per­i­mental veri­fic­a­tion is very dif­fi­cult.

New Study Sheds Light on Origins of Life on Earth

A Rutgers-led team has discovered the structures of proteins that may be responsible for the origins of life in the primordial soup of ancient Earth.

Addressing one of the most profoundly unanswered questions in biology, a Rutgers-led team has discovered the structures of proteins that may be responsible for the origins of life in the primordial soup of ancient Earth.

The study appears in the journal Science Advances.

The researchers explored how primitive life may have originated on our planet from simple, non-living materials. They asked what properties define life as we know it and concluded that anything alive would have needed to collect and use energy, from sources such as the Sun or hydrothermal vents.

In molecular terms, this would mean that the ability to shuffle electrons was paramount to life. Since the best elements for electron transfer are metals (think standard electrical wires) and most biological activities are carried out by proteins, the researchers decided to explore the combination of the two — that is, proteins that bind metals.

They compared all existing protein structures that bind metals to establish any common features, based on the premise that these shared features were present in ancestral proteins and were diversified and passed down to create the range of proteins we see today.

New research may help scientists unravel the physics of the solar wind

NASA’s Parker Solar Probe, provides insight into how solar wind is generated and accelerated.
Photo credits: Cynthia Cattell, NASA/Johns Hopkins APL/Steve Gribben

A new study led by University of Minnesota Twin Cities researchers, using data from NASA’s Parker Solar Probe, provides insight into what generates and accelerates the solar wind, a stream of charged particles released from the sun’s corona. Understanding how the solar wind works can help scientists predict “space weather,” or the response to solar activity—such as solar flares—that can impact both astronauts in space and much of the technology people on Earth depend on.

The paper is published in Astrophysical Journal Letters, a scientific journal from the American Astronomical Society (AAS) that publishes high-impact astrophysical research.

The scientists used data gathered from Parker Solar Probe, which launched in 2018 with the goal to help scientists understand what heats the Sun’s corona (the outer atmosphere of the sun) and generates the solar wind. To answer these questions, scientists need to understand the ways in which energy flows from the sun. The latest round of data was obtained in August 2021 at a distance of 4.8 million miles from the sun—the closest a spacecraft has ever been to the star.

Earth on trajectory to Sixth Mass Extinction say biologists

Shells from recently extinct land snails from French Polynesia. 
Photo credit: O.Gargominy, A.Sartori.

Mass biodiversity extinction events caused by extreme natural phenomena have marked the history of life on Earth five times. Today, many experts warn that a Sixth Mass Extinction crisis is underway, this time entirely caused by human activities.

A comprehensive assessment of evidence of this ongoing extinction event was published in Biological Reviews by biologists from the University of Hawaiʻi at Mānoa and the Muséum National d’Histoire Naturelle in Paris, France.

“Drastically increased rates of species extinctions and declining abundances of many animal and plant populations are well documented, yet some deny that these phenomena amount to mass extinction,” said Robert Cowie, lead author of the study and research professor at the UH Mānoa Pacific Biosciences Research Center in the School of Ocean and Earth Science and Technology. “This denial is based on a highly biased assessment of the crisis which focuses on mammals and birds and ignores invertebrates, which of course constitute the great majority of biodiversity.”

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles