Source/Credit: Yale University |
Extremely small arrays of magnets with strange and unusual properties can order themselves by increasing entropy, or the tendency of physical systems to disorder, a behavior that appears to contradict standard thermodynamics—but doesn’t.
“Paradoxically, the system orders because it wants to be more disordered,” said Cristiano Nisoli, a physicist at Los Alamos and coauthor of a paper about the research published in Nature Physics. “Our research demonstrates entropy-driven order in a structured system of magnets at equilibrium.”
The system examined in this work, known as tetris spin ice, was studied as part of a long-standing collaboration between Nisoli and Peter Schiffer at Yale University, with theoretical analysis and simulations led at Los Alamos and experimental work led at Yale. The research team includes scientists from a number of universities and academic institutions.
Nanomagnet arrays, like tetris spin ice, show promise as circuits of logic gates in neuromorphic computing, a leading-edge computing architecture that closely mimics how the brain works. They also have possible applications in a number of high-frequency devices using “magnonics” that exploit the dynamics of magnetism on the nanoscale.